K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác ADEC có 

AD//EC(gt)

AD=EC(gt)

Do đó: ADEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo AE và DC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AE cắt DC tại M(gt)

nên M là trung điểm chung của DC và AE(đpcm)

b) Xét tứ giác ABEF có 

M là trung điểm của đường chéo AE(cmt)

M là trung điểm của đường chéo BF(gt)

Do đó: ABEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: AB//DC(gt)

AB//FE(ABEF là hình bình hành)

Do đó: FE//DC(Định lí 3 từ vuông góc tới song song)

Xét ΔDMF và ΔCMB có 

MF=MB(gt)

\(\widehat{DMF}=\widehat{CMB}\)(hai góc đối đỉnh)

MD=MC(M là trung điểm của DC)

Do đó: ΔDMF=ΔCMB(c-g-c)

Suy ra: DF=BC(hai cạnh tương ứng)

mà AD=EC(ADEC là hình bình hành)

và AD=BC(ABCD là hình thang cân)

nên DF=EC

Hình thang DCEF(DC//FE) có DF=EC(cmt)

nên DCEF là hình thang cân

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

a) Xét tứ giác ABED có

AB//ED(gt)

AB=ED

Do đó: ABED là hình bình hành(Dấu hiệu nhận biết hình bình hành)

8 tháng 9 2018

bn vào Link này xem thử nhé :

Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,ABa) Chứng minh rằng tứ giác BCDE là hình thang cânb) Chứng minh rằng tứ giác CNEQ là hình thangc) Tam giác MNP là tam giác đề - Tìm với Google

Hok tốt 

# EllyNguyen #

8 tháng 9 2018

@Elly Nguyễn Link đâu bạn 

8 tháng 9 2018

Các bạn bỏ câu c nhé

8 tháng 9 2018

Bạn kham khảo nha:

Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online Math

17 tháng 8 2018

a. MNIJ là hình thang vì JI // BC, MN // CD 

Vì ABC va CED là tam giác đều, các góc 60độ => AB // CE và AC//ED 

dễ dàng cm được MJ // AB, kết hợp MN // BC => góc JMN = góc ABC = 60 độ

tương tự góc còn lại => MNIJ là cân

b. từ câu a => JN=MI mà MI = 1/2 AE => đpcm

17 tháng 8 2018

bạn trình bày rõ hơn được ko

30 tháng 9 2019
Giúp mik với mik cần thank
30 tháng 9 2019

Đề bài bị sai

Đề đúng: Gọi M, N, P, Q theo thứ tự là trung điểm của các đoạn thẳng BE; AD; AC; AB.

Bài giải:

A B C D E N M Q P

a) \(\Delta\)ABC đều

=> ^BAC = 60 độ 

mà ^ EAD = ^BAC ( đối đỉnh)

=> ^EAD = 60 độ 

Xét \(\Delta\) EAD có ^EAD = 60 độ và AE = AD 

=> \(\Delta\)EAD đều

=> ^EDA  = ^ABC (= 60 độ )  mà hai góc này ở vị trí so le trong 

=> ED//BC  (1)

Xét \(\Delta\) EAB và \(\Delta\)DAC có:

AE = AD ;

^ EAB = ^DAC ( đối đỉnh)

AB = AC

=> \(\Delta\)EAB = \(\Delta\)DAC

=> ^BEA = ^CDA 

mà ^ AED = ^ ADE ( \(\Delta\)AED đều )

=> ^ BEA + ^AED = ^CDA + ^DAC 

=> ^BED = ^CDA  (2)

Từ (1) ; (2) => Tứ giác BEDC là hình thang cân.

b) ED // BC ( theo 1)

=> \(\frac{AE}{AC}=\frac{AD}{AB}=\frac{2AN}{2AQ}=\frac{AN}{AQ}\)

=> \(\frac{AE}{AC}=\frac{AN}{AQ}\)

=> EN//CQ

=> CNEQ là hình thang.