Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Kẻ đường cao $BK$
Tứ giác $ABKH$ có $AB\parallel HK, AH\perp BK$ (cùng vuông góc với $DC$) nên $ABKH$ là hình bình hành. Mà $\widehat{AHK}=90^0$ nên $ABKH$ là hình chữ nhật.
\(\Rightarrow HK=AB\); $AH=BK$
Xét 2 tam giác vuông $ADH$ và $BCK$ có:
\(AD=BC\) (tính chất hình thang cân)
\(AH=BK\)
\(\Rightarrow \triangle ADH=\triangle BCK(ch-cgv)\)
\(\Rightarrow DH=CK\)
Mà \(DH+CK=DC-HK=DC-AB\)
\(\Rightarrow DH=\frac{DC-AB}{2}\) (đpcm)
b)
Theo phần a \(CK=DH=\frac{DC-AB}{2}=\frac{13-5}{2}=4\) (cm)
\(DK=DH+HK=DH+AB=4+5=9\) (cm)
Xét tam giác $BDK$ và $CBK$ có:
\(\widehat{BKD}=\widehat{CKB}=90^0\)
\(\widehat{BDK}=\widehat{CBK}(=90^0-\widehat{DBK})\)
\(\Rightarrow \triangle BDK\sim \triangle CBK(g.g)\Rightarrow \frac{BK}{DK}=\frac{CK}{BK}\)
\(\Rightarrow BK^2=CK.DK=4.9=36\Rightarrow BK=6\) (cm)
Áp dụng đl Pitago cho tam giác vuông $BHK$: \(HB=\sqrt{HK^2+BK^2}=\sqrt{5^2+6^2}=\sqrt{61}\) (cm)
\(S_{ABCD}=\frac{(AB+CD).BK}{2}=\frac{(5+13).6}{2}=54(cm^2)\)
A B C D O a^2 b^2 M N
(Hình ảnh chỉ mang tính chất minh họa)
a) Kẻ DM và CN vuông góc với AB
=> MN = CD (Theo cách vẽ)
=> DC - AB = MN - AB = MA + BN
=> DC - AB = MA + BN
Tam giác vuông MAD và NBC vuông lần lượt tại M,N
=> AM < AD và BN < BC (Cạnh góc vuông < Cạnh huyền)
=> DC - AB = MA + BN < AD + BC (ĐPCM
Quéo quèo queo, sai đề rồi bạn ơi, bị lỗi kĩ thuật luôn: ((
a: \(BC\cdot CH=CA^2\)
\(AD\cdot AH=AC^2\)(ΔACD vuông tại C có CH là đường cao)
Do đó: \(BC\cdot CH=AD\cdot AH\)
Xét ΔBCA vuông tại A và ΔADC vuông tại C có
góc BCA=góc ADC
Do đó: ΔBCA đồng dạng với ΔADC
Suy ra: AB/AC=AC/DC
hay \(AC^2=AB\cdot DC=BC\cdot CH=AD\cdot AH\)
c: \(\dfrac{BE}{BC}=\dfrac{BH^2}{AB}:BC=\dfrac{BH^2}{AB\cdot BC}=\left(\dfrac{AB^2}{BC}\right)^2\cdot\dfrac{1}{AB\cdot BC}\)
\(=\dfrac{AB^3}{BC^3}=\left(\dfrac{AB}{BC}\right)^3=cos^3B\)
hay \(BE=cos^3B\cdot BC\)
Ủng hộ cho em đi cám ơn nhiều
\(AH \perp d, BE \perp d.\) cái đó là (AH vuông góc với d, BC vuông góc với d) nó bị lỗi