K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2020

Thực ra thì có 1 định lí là nếu 1 tứ giác có 2 đường chéo vuông góc thì diện tích tứ giác bằng 1 nửa tích 2 đường chéo.

Nên \(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.3.4=6cm^2\),chẳng cần biết AB để làm gì cả :))

Chứng minh cũng đơn giản thoi

Tứ giác ABCD có AC và BD vuông góc tại H

Tam giác ABD có đường cao AH \(\Rightarrow S_{ABD}=\frac{1}{2}BD.AH\)

Tam giác BCD có đường cao CH \(\Rightarrow S_{BCD}=\frac{1}{2}BD.CH\)

Vậy \(S_{ABCD}=S_{ABD}+S_{CBD}=\frac{1}{2}BD\left(BH+CH\right)=\frac{1}{2}BD.AC\)

Xooooong !!!

21 tháng 5 2018

Xét tam giác ABD và tam giác BDC có:

\(\widehat{BAD}=\widehat{DBC}=90^o\)

\(\widehat{ABD}=\widehat{BDC}\)   (Cùng phụ với góc \(\widehat{ADC}\)  )

\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow BD^2=\frac{AB}{DC}\)

Xét tam giác vuông ABD, áp dụng định lý Pi-ta-go ta có:

      \(DB^2=AB^2+AD^2=2^2+4^2=20\)

Suy ra \(2=\frac{20}{DC}\Rightarrow DC=10cm\)

Xét tam giác vuông BDC, áp dụng định lý Pi-ta-go ta có:

  \(BC^2=DC^2-BD^2=10^2-20=80\Rightarrow BC=\sqrt{80}\left(cm\right)\)

Vậy chu vi hình thang vuông bằng:    2 + 4 + 10 + \(\sqrt{80}=14+\sqrt{80}\left(cm\right)\)

Diện tích hình thang bằng: \(\frac{\left(2+10\right).4}{2}=24\left(cm^2\right)\)

21 tháng 5 2018

20cm2

23 tháng 8 2021

Hình vẽ minh họaundefined

23 tháng 8 2021

Hình vẽ minh họa 
undefined

a: Xét ΔFAB và ΔFCD có

góc FAB=góc FCD

góc AFB=góc CFD

=>ΔFAB đồng dạng với ΔFCD

b: ΔFAB đồng dạng với ΔFCD

=>FA/FC=FB/FD

=>FA*FD=FB*FC

 

15 tháng 9 2018

BD cắt AC tại O

xét tam giác ABO và tam giác CDO

 \(\widehat{aob}=\widehat{cod}\)

\(\widehat{abo}=\widehat{cdo}\)(ab//cd)

do đó tam giác ABO bằng tam giác CDO

\(\Rightarrow\frac{AB}{CD}=\frac{AO}{BO}=\frac{CO}{DO}=\frac{AO+CO}{BO+DO}=\frac{AC}{BD}=\frac{AC}{6}=\frac{3}{7}\)

\(\Rightarrow AC=\frac{6.3}{7}=\frac{18}{7}\left(cm\right)\)