K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

Trong ΔADB, ta có: MN // AB (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 hệ quả định lí ta-lét) (1)

Trong ΔACB, ta có: PQ // AB (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 Hệ quá định lí Ta-lét) (2)

Lại có: NQ // AB (gt)

       AB // CD (gt)

Suy ra: NQ // CD

Trong ΔBDC, ta có: NQ // CD (chứng minh trên)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8(Định lí Ta-lét) (3)

Từ (1), (2) và (3) suy ra Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 hay MN = PQ.

16 tháng 6 2019

Trong ΔADB, ta có: MN // AB (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 hệ quả định lí ta-lét) (1)

Trong ΔACB, ta có: PQ // AB (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 Hệ quá định lí Ta-lét) (2)

Lại có: NQ // AB (gt)

       AB // CD (gt)

Suy ra: NQ // CD

Trong ΔBDC, ta có: NQ // CD (chứng minh trên)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8(Định lí Ta-lét) (3)

Từ (1), (2) và (3) suy ra Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 hay MN = PQ.

a: DN/BD=DM/DA

CP/CA=CQ/CB

mà DM/DA=CQ/CB

nên DN/BD=CP/CA

b: Xét ΔDAB có MN//AB

nên MN/AB=DM/DA

Xet ΔCAB có PQ//AB

nên PQ/AB=CQ/CP

mà DM/DA=CQ/CP

nên  MN=PQ

16 tháng 1 2022

\(\dfrac{DN}{BD}=\dfrac{CQ}{BC}=\dfrac{CP}{AC}\)

22 tháng 2 2024

Để chứng minh rằng MN=PQ, ta sẽ sử dụng tính chất của các tam giác đồng dạng.

Gọi X là giao điểm của MQNP.

Ta có các tam giác đồng dạng sau:

MQXNPX (do MQ song song với NP, XM song song với PN và góc MXQPXN là góc đồng phía nội tiếp giữa hai đoạn thẳng MQNP).XMDXCB (do MQ song song với CBMD song song với BX).XNCXAD (do NP song song với ADNC song song với XA).

Từ tính chất của các tam giác đồng dạng, ta có thể viết các tỉ số tương ứng:

(1)PNMQ​=PXQX​(1)(2)CBMD​=XBXM​(2)(3)ADNC​=AXNX​(3)

Như vậy, từ các phương trình trên, ta có thể suy ra:

(4)PNMQ​=CBMD​⋅ADNC​(4)

Vậy nên ta thấy rằng PNMQ​=CBMD​⋅ADNC​.

Từ (4), ta thấy rằng MQ=PN khi và chỉ khi MD=NC, CB=AD, tức là ABCD là hình vuông.

Do đó, ta đã chứng minh được rằng MN=PQ khi và chỉ khi ABCD là hình vuông.

mong là đúng:))hehehehehehe

    

21 tháng 1 2021

Xét Tam giác ADB:  MN // AB (gt)

Suy ra:  DN/DB = MN/AB  (Hệ quả định lí Talét) (1)

Xét Tam giác ACB:  PQ // AB (gt)

Suy ra:  CQ/CB = PQ/AB    (Hệ quá định lí Talét)  (2)

Ta có:   NQ  sog sog  AB (gt)

             AB  sog sog  CD (gt)

Suy ra:  NQ  sog sog  CD (cùng sog sog  AB)

Xét Tam giác BDC:  NQ  sog sog  CD (cmt)

Suy ra:  DN/DB = CQ/CB (Định lí Talét)                (3)

Từ (1), (2) và (3)  suy ra:  MN/AB  =  PQ/AB

                             Suy ra:  MN = PQ  (đpcm).

 

5 tháng 12 2017

Trong ΔDAB, ta có: OM // AB (gt)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét) (1)

Trong ΔCAB, ta có: ON // AB (gt)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét) (2)

Trong ΔBCD, ta có: ON // CD (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí Ta-lét) (3)

Từ (1), (2) và (3) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy: OM = ON