K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

b) Do AB//CD nên áp dụng hệ quả và định lý Talet ta có:

\(\frac{AO}{OC}=\frac{OB}{OD}\)hay \(\frac{DO}{DB}=\frac{OC}{AC}\)

Xét tam giác ABD có OM//AB nên \(\frac{OM}{AB}=\frac{DO}{DB}\)

Tương tự \(\frac{ON}{AB}=\frac{CO}{CA}\)

Vậy nên \(\frac{OM}{AB}=\frac{ON}{AB}\)\(\Rightarrow OM=ON\left(đpcm\right)\)

Nguồn: Cách của cô Huyền

2 tháng 4 2020

A B C D O M N

Không biết c/m nên chỉ vẽ hình thoiii ạ

Nếu hình sai thì mong mỏi người sửa lại giúp ạ 

Chúc bạn học tốt ^^

5 tháng 12 2017

Trong ΔDAB, ta có: OM // AB (gt)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét) (1)

Trong ΔCAB, ta có: ON // AB (gt)

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét) (2)

Trong ΔBCD, ta có: ON // CD (gt)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (định lí Ta-lét) (3)

Từ (1), (2) và (3) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy: OM = ON

13 tháng 2 2022

a.Xét ∆OCD có AB // CD (gt)

⇒OAOC=OBOD⇒OAOC=OBOD (hệ quả của định lí Thales)

⇒OA.OD=OB.OC

5 tháng 5 2017

Xét tam giác ABC ta có:

ON // AB (gt)

=> \(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(1\right)\)\(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(2\right)\)

Xét tam giác ABD ta có:

OM // AB (gt)

=> \(\dfrac{OM}{AB}=\dfrac{DO}{DB}\left(2\right)\)

Vì AB // CD nên \(\dfrac{DO}{DB}=\dfrac{CO}{CA}\left(3\right)\)

Từ (1), (2) và (3) suy ra:

\(\dfrac{ON}{AB}=\dfrac{OM}{AB}=>OM=ON\)

Vậy OM = ON.

27 tháng 1 2016

Tam giác ABD có OE//AB =>DO/DB = OE/AB (Theo hệ quả Đlý Ta-lét) (1) 
Tam giác ABC có OF//AB =>CO/CA = OF/AB (Theo hệ quả Đlý Ta-lét) (2) 
Tam giác ABO có CD//AB =>OD/OB = OC/OA (Theo hệ quả Đlý Ta-lét) 
=> OD/(OB+OD) = OC/(OA+OC) hay OD/DB=CO/CA (3) 
Từ (1) (2) và (3) => OE/AB = OF/AB 
=> OE = OF (điều phải chứng minh.) 
Chúc bạn học giỏi nha.

Bài 2: 

Xét ΔADC có OM//DC

nen OM/DC=AM/AD(1)

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC(2)

Xét hình thag ABCD có MN//AB//CD
nên AM/AD=BN/BC(3)

Từ (1) (2)và (3) suy ra OM=ON