Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kéo dài AM cắt DC kéo dài tại E
+ Xét tg ABM và tg ECM có
^BAM = ^CEM (góc so le trong)
^AMB = ^CME (góc đối đỉnh)
=> tg ABM đồng dạng tg ECM \(\Rightarrow\frac{BM}{CM}=\frac{AM}{EM}=1\) => M là trung điểm của AE
=> AM là đường cao và đường trung tuyến của tg ADE => tg ADE cân tại D => DM là đường phân giác của ^ADC
A B M D C N
Bài làm:
Gọi N là trung điểm của AD
=> MN là đường trung bình của hình thang ABCD
=> MN // CD => \(\widehat{CDM}=\widehat{NMD}\) (so le trong) (1)
Lại có: MN là đường trung tuyến ứng với cạnh huyền của tam giác vuông AMD
=> \(MN=\frac{AD}{2}=ND\) => Tam giác MND cân tại N
=> \(\widehat{NMD}=\widehat{NDM}\) (2)
Từ (1) và (2) => \(\widehat{CDM}=\widehat{NDM}\)
=> DM là phân giác góc ADC
=> đpcm
A B D C K M
gọi giao của AM và CD là K
ta chứng minh tam giac ADK cân tại D
dễ dàng chứng minh tam giác ABM= tam giác KCM
(do AM=MK(gt), gócAMB=gócCMK(đối đỉnh), góc ABM=góc MCK(do AB//CD))
từ đó suy ra AM=Mk
mà DM là phân giác nên tam giác ADK cân tại D
từ đó góc DAM=DKM=MAB
nen AM là phân giác góc A
đường thẳng DE cắt đường thẳng AB tại F. Dễ dàng chứng minh tam giác DEC bằng Tam giác FEB (g-c-g) (Góc DEC = góc FEB (dối đỉnh); góc ECD bằng góc EBF ( sole trong); EC = EB (Trung điểm)) ==> DE = FE ==> AE là đường trung trực của DF ==> tam giác ADF cân tại A ==> Góc ADF = Góc AFD. Mà góc AFD = góc FDC ( sole trong) ==>Góc ADF = Góc AFD ==> DE là phân giác góc D. Phè phè... MỆT QUÁ! Xong rồi đó! hehe
Lời nói chẳng mất tiền mua. Lựa lời mà chửi cho vừa lòng nhau. Đã chửi, phải chửi thật đau. Chửi mà hiền quá còn lâu nó chừa. Chửi đúng , không được chửi bừa . Chửi cha mẹ nó , không thừa một ai . Khi chửi , chửi lớn mới oai. Chửi hay là phải chửi dài , chửi lâu . Chửi đi chửi lại mới ngầu. Chửi nhiều cho nó nhức đầu , đau tai. Chửi xong nhớ nói bái bai . Phóng nhanh kẻo bị ăn chai vào mồm.
Gọi E là trung điểm AD. Ta có ME là đường trung bình của hình thang ABCD => ME // CD // AB
Suy ra góc MDC = góc MDE = góc DME (so le trong)
=> Tam giác DEM cân tại E => ME = DE = AE
=> Tam giác AEM cân tại E => góc EAM = góc EMA (1)
mà EM // AB => Góc AME = góc BAM (so le trong) (2)
Từ (1) và (2) suy ra góc EAM = góc BAM
=> AM là tia phân giác góc A (đpcm)
GỌI E LÀ GIAO ĐIỂM CỦA AM;DC
CHỨNG MINH GÓC MAB VÀ GÓC MAC CÙNG BẰNG GÓC E
ghét hè. mi cứ đi hỏi lung tung nik. trách chi bựa đến giừ bài tập làm đc
kéo dài DA và CB cắt nhau tại K
AB là đường trung bình ( AB//DC và 2AB = DC)
=> B là trung điểm KC
=> DB là trung tuyến ΔKDC vuông tại D
=> DB = BC = DC
=> tam giác DBC đều
Vậy góc KCD= 60độ
tổng 4 góc trong tứ giác ABCD = 360độ
=> góc ABC = 120độ
cách 2
Kẻ BH⊥CD suy ra tứ giác ABHD là hình chữ nhật
nên ^ABH=90* (1)
Xét ∆BHC vuông tại H có HC=1/2 BC nên ^HBC=30* (2)
Từ (1) và (2) suy ra ^ABC=^ABH+^HBC=90*+30*=120*