K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
GV
Giáo viên Toán
Giáo viên
29 tháng 4 2017
a) \(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{10+6}{2}.5=40\left(cm^2\right)\)
b) Xem hình vẽ
A B C D E 6 4 5 F
Tam giác vuông EAD có: \(AE=\sqrt{AD^2-DE^2}=\sqrt{5^2-4^2}=3\)
Vì ABCD là hình thang cân nên AE = FB = 3.
Suy ra AB = EF + AE + FB = 6 + 3 + 3 = 12.
\(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{12+6}{2}.4=36\left(cm^2\right)\)
27 tháng 7 2021
a) Xét ΔADH vuông tại H và ΔBCK vuông tại K có
AD=BC(ABCD là hình thang cân)
\(\widehat{D}=\widehat{C}\)(ABCD là hình thang cân)
Do đó: ΔADH=ΔBCK(cạnh huyền-góc nhọn)
Suy ra: DH=CK(hai cạnh tương ứng)
ta có tam giác ADH vuông tại H
=> AH^2+HD^2=AD^2
=>HD^2=AD^2-AH^2
=5^2-4^2
=9
=>HD=3 cm
kẻ BK vuông góc với CD
=>ABKH là hình chữ nhật
=>AH=BK=4cm
tam giác BKC vuông tại K
=>BK^2+KC^2=BC^2
=>KC^2=BC^2-BK^2
=80-16
=64
=>KC=8 (cm)
lại có DH+HK+KC=20
=>HK=20-3-8=9 (cm)
=>AB+HK=9 cm
ta có chu vi hình thang ABCD là AB+BC+CD+DA=9+√80+20+5=34+√80(cm)