Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựng hình bình hành ABPC. Khi đó \(AD=AB+CD=CP+CD=DP\)
Ta có \(\dfrac{AB}{FE}=\dfrac{DA}{DF}\), \(\dfrac{CD}{FE}=\dfrac{DA}{AF}\)
\(\Rightarrow\dfrac{AB+CD}{FE}=DA\left(\dfrac{1}{DF}+\dfrac{1}{AF}\right)\)
\(\Rightarrow\dfrac{1}{FE}=\dfrac{DA}{DF.AF}\) \(\Rightarrow\dfrac{DF}{FE}=\dfrac{DP}{FA}\) \(\Rightarrow\dfrac{DF}{DC}=\dfrac{DP}{DA}=1\)
Từ đó \(\Delta DFC\) cân tại D. \(\Rightarrow\widehat{DFC}=\widehat{DCF}=\widehat{CFE}\) \(\Rightarrow\) FC là tia phân giác của \(\widehat{DFE}\). CMTT, FB là tia phân giác của \(\widehat{AFE}\). Do đó \(\widehat{BFC}=90^o\) (đpcm)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
tick nha
Vì OE // DC ==> OA/AC = OE/DC (định lý Ta-let) (1)
Vì OF // DC ==> OB/BD = OF/DC (định lý Ta-let) (2)
Vì AB // CD ==> OA/OC = OB/OD (định lý ta-let)
Theo tính chất dãy tỉ số bằng nhau ta có:
OA/OC = OB/OD <=> OA / (OA + OC) = OB / (OB + OD)
<=> OA / AC = OB / BD (3)
Từ (1), (2) và (3) suy ra ta có:
OE / DC = OF / DC <=> OE = OF (đpcm)
a) Áp dụng hệ quả định lý thales:
\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)
Áp dụng BĐT bunyakovsky:
\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)
\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)
dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)
b) chưa nghĩ :v