K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

Ta thấy AE = 2BE nên ta có chiều cao hạ từ A xuống EC bằng 2 lần chiều cao hạ từ B xuống EC.

Từ đó ta có:

\(S_{AGC}=2S_{BGC}\)   (Chung cạnh đáy GC)

Lại có tam giác AGD và tam giác GCD có cạnh đáy AD bằng cạnh đáy DC và chung chiều cao hạ từ G xuống AC nên \(S_{AGD}=S_{GCD}\Rightarrow S_{GDC}=\frac{1}{2}S_{AGC}\Rightarrow S_{GDC}=S_{GBC}=\frac{1}{2}S_{BDC}\) 

Ta có \(S_{BDC}=\frac{1}{2}S_{ABC}=\frac{1}{2}.120=60\left(cm^2\right)\)

\(\Rightarrow S_{GBC}=60:2=30\left(cm^2\right)\)

28 tháng 3 2018

cảm ơn bạn nhiều lắm

2 tháng 3 2018

hình mà ghi là hịnh

28 tháng 3 2018

Em tham khảo tại đây nhé.

Câu hỏi của Nguyễn Đúc Phương Nam - Toán lớp 5 - Học toán với OnlineMath

14 tháng 12 2020

Xét tg BCE và tg ABC có chung đường cao hạ từ C xuống AB nên

\(\frac{S_{BCE}}{S_{ABC}}=\frac{BE}{BA}=\frac{1}{3}\Rightarrow S_{BCE}=\frac{1}{3}.S_{ABC}\)

\(\Rightarrow S_{ACE}=S_{ABC}-S_{BCE}=S_{ABC}=\frac{1}{3}.S_{ABC}=\frac{2}{3}.S_{ABC}\)

Xét tg CDE và tg ACE có chung đường cao hạ từ E xuống AC nên \(\frac{S_{CDE}}{S_{ACE}}=\frac{CD}{AC}=\frac{1}{2}\Rightarrow S_{CDE}=\frac{1}{2}.S_{ACE}=\frac{1}{2}.\frac{2}{3}.S_{ABC}=\frac{1}{3}.S_{ABC}\)

\(\Rightarrow S_{BCE}=S_{CDE}=\frac{1}{3}.S_{ABC}\) Hai tg này có chung đáy CE nên đường cao hạ từ B xuống CE = đường cao hạ từ D xuống CE

Xét tg BCD và tg ABC có chung đường cao hạ từ B xuống AC nên

\(\frac{S_{BCD}}{S_{ABC}}=\frac{CD}{AC}=\frac{1}{2}\Rightarrow S_{BCD}=\frac{1}{2}.S_{ABC}\)

Xét tg BGC và tg CGD có chung đáy CG và đường cao hạ từ B xuống CE = đường cao hạ từ D xuống CE nên

\(S_{BGC}=S_{CGD}=\frac{1}{2}.S_{BCD}=\frac{1}{2}.\frac{1}{2}.S_{ABC}=\frac{1}{4}.S_{ABC}=\frac{1}{4}.120=30m^2\)

27 tháng 3 2015

thì cậu trả lời rùi thì làm gì còn ai sợ nữa

Bài 1 : Cho tam giác ABC . Gọi D , E lần lượt là các điểm thuộc cạnh AC và AB sao cho DA = DC và EA =EB . Nối BD và CE cắt nhau tại K  Biết CE = 21 cm .  tính độ dài đoạn CK và KE .Bài 2 : Cho hình vuông ABCD có cạnh 6 cm . Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD . a) Tính diện hình vuông ABCDb) Tính diện tích hình AECPc) M là điểm chính giữa cạnh PC , N là điểm chính giữa cạnh DC . MD và NP cắt...
Đọc tiếp

Bài 1 : Cho tam giác ABC . Gọi D , E lần lượt là các điểm thuộc cạnh AC và AB sao cho DA = DC và EA =EB . Nối BD và CE cắt nhau tại K  Biết CE = 21 cm .  tính độ dài đoạn CK và KE .

Bài 2 : Cho hình vuông ABCD có cạnh 6 cm . Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD . 

a) Tính diện hình vuông ABCD

b) Tính diện tích hình AECP

c) M là điểm chính giữa cạnh PC , N là điểm chính giữa cạnh DC . MD và NP cắt nhau tại I . So sánh diện tích tam giác IPM với diện tích tam giác IDN

Bài 3 : Cho hình thang ABCD có đáy AB bằng 2/3 đáy CD . Trên cạnh BC lấy một điểm E sao cho đoạn BE bằng 2/5 đoạn CE . Biết diện tích tam giác AED là 32 cm2 . Tính diện tích hình thang ABCD .

Bài 4 : Cho tam giác vuông ABC có góc vuông tại A . Cạnh AB dài 3 cm ,  cạnh AC dài 4 cm , cạnh BC dài 5 cm . Trên cạnh AB lấy điểm  M sao cho AM bằng 2 cm , trên cạnh AC lấy điểm N sao cho AN bằng 1 cm , trên cạnh BC lấy điểm E sao cho BE bằng 2,5 cm . Tính diện tích tam giác MNE

 

14
15 tháng 5 2016

bài 1: ta có;CE là trung tuyến của tam giác ABC =>KE=1/3 CE=1/3 x21=7(cm)

CK=2/3 CE=2/3x21=14(cm0

15 tháng 5 2016

5 người đầu tiên mình sẽ được mình tích

20 tháng 7 2015

Ai trả lời giúp mk đi , cả lời giải và phép tính mai mk fai nộp rồi

7 tháng 6 2018

a/ tỉ số diện tích tam giác ABD và diệ tích tam giác ABC là:1/3

b/s tam giác ABD là : 8 :2x3=12cm2

diện tích ABC là : 12x3=36 cm2

    mk chỉ biết lammf phần A và B thôi còn phần C khó quá               


 

12 tháng 7 2017

ban ve hinh ra di

27 tháng 3 2021

I

DD
28 tháng 5 2021

\(AD=\frac{1}{3}\times CD\Rightarrow S_{ABF}=\frac{1}{3}\times S_{BFC}\)

\(BE=\frac{1}{3}\times AB\Rightarrow S_{BEF}=\frac{1}{3}\times S_{ABF}\)

\(\Rightarrow S_{BEF}=\frac{1}{3}\times\frac{1}{3}\times S_{BFC}=\frac{1}{9}\times S_{BFC}\Rightarrow S_{BEF}=\frac{1}{10}\times S_{BEC}\)

\(BE=\frac{1}{3}\times AB\Rightarrow S_{BEC}=\frac{1}{3}\times S_{ABC}\)

\(\Rightarrow S_{BEF}=\frac{1}{10}\times\frac{1}{3}\times S_{ABC}=\frac{1}{30}\times S_{ABC}\)

\(\Rightarrow S_{BAC}=30\times S_{BEF}=5400\left(cm^2\right)\)