Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ: A B C H D
a/ Xét tam giác AHB và tam giác DHB có:
BD = AH (GT)
HB: cạnh chung
góc H = góc B = 900
=> tam giác AHB = tam giác DHB (c.g.c)
b/ Ta có: tam giác AHB = tam giác DHB (câu a)
=> góc ABH = góc BHD (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // DH (đpcm)
c/ Ta có: góc BAH + góc ABH = 900
Mà BAH = 350 => ABH = 550
Ta có: BAH + CAH = 900 (theo giả thiết)
Mà BAH = 350 => CAH = 550
Ta có: CAH + ACB = 900
Mà ta có: ABH = CAH = 550
nên BAH = ACB = 350
a: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là phân giác của góc BAC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là trung trực của BC
=>I nằm trên trung trực của BC
=>IB=IC
d: Xet ΔABN có góc ABN=góc ANB=góc MBC
nên ΔABN can tại A
=>AB=AN
e: Xét ΔABC co
BM,AM là phân giác
nên M là tâm đừog tròn nội tiếp
=>CM là phân giác của góc ACB
Xét ΔHCM vuông tại H và ΔKCM vuông tại K có
CM chung
góc HCM=góc KCM
=>ΔHCM=ΔKCM
=>MH=MK