Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5)
a)
Có 3x+y = 1
\(\Rightarrow x+x+x+y=1\)
Áp dụng bất đẳng thức bunhiacopxki ta có :
\(\left(x^2+x^2+x^2+y^2\right)\left(1^2+1^2+1^2+1^2\right)\ge\left(x+x+x+y\right)^2\)
\(\Rightarrow3x^2+y^{2^{ }}.4\ge\left(3x+y\right)^2\)
\(\Rightarrow3x^2+y^2\ge\dfrac{1}{4}\)
b)
Áp dụng bất đẳng thức AM - GM ta có :
\(\left[{}\begin{matrix}a^2+1^2\ge2a\\b^2+1^2\ge2b\\c^2+1^2\ge2c\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(a+1\right)^2\ge4a^{ }\\\left(b+1\right)^2\ge4b^{ }\\\left(c+1\right)^2\ge4c^{ }\end{matrix}\right.\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a^{ }.4b.4c^{ }\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64a^{ }bc^{ }\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64abc\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge64\)
\(\Rightarrow\left(a+1\right)^{ }\left(b+1\right)^{ }\left(c+1\right)^{ }\ge8\) \(\left(đpcm\right)\)
3)
Sửa đề \(A=\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)
Đặt b + c - a = x , a+c-b = y , a+b-c= z
\(\Rightarrow\left[{}\begin{matrix}2a=y+z\\2b=x+z\\2c=x+y\end{matrix}\right.\)
Có :
\(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\)
\(\Rightarrow\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)
\(\Rightarrow\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)
\(\Rightarrow\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)
Áp dụng bất đẳng thức \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\forall a,b>0\)
\(\Rightarrow\) \(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)
\(\Rightarrow\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\ge6\)
\(\Rightarrow2\left(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\right)\ge6\)
\(\Rightarrow\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\) \(\left(đpcm\right)\)
a) \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)
b) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2=\left(x^2+x+1+x^2+2x+3\right)\left(x^2+x+1-x^2-2x-3\right)\)
\(=-\left(2x^2+3x+4\right)\left(x+2\right)\)
d) \(64+16y+y^2=\left(8+y\right)^2\)
c) mk chỉnh đề:
\(16-\left(x-3\right)^2=\left(4+x-3\right)\left(4-x+3\right)=\left(x+1\right)\left(7-x\right)\)
a) \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)
b) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2\)
\(=\left(x^2+x-1+x^2+2x+3\right)\left(x^2+x-1-x^2-2x-3\right)\)
\(=\left(2x^2+3x+2\right)\left(-4-x\right)\)
c) \(-16+\left(x-3\right)^2=\left(x-3\right)^2-16=\left(x-3-4\right)+\left(x-3+4\right)=\left(x-7\right)\left(x+1\right)\)
d) \(64+16y+y^2\)
\(=8^2+2.8.y+y^2\)
\(=\left(8+y\right)^2\)
a: \(=\left(m-n\right)\left(m+n\right)\)
b: \(=\left(x^2+x-1-x^2-2x-3\right)\left(x^2+x-1+x^2+2x+3\right)\)
\(=\left(-x-4\right)\left(2x^2+3x+2\right)\)
d: \(=\left(y+8\right)^2\)
a) Ta có \(x^2-6x+11=\left(x-3\right)^2+2\ge2;y^2+2y+4=\left(y+1\right)^2+3\ge3\)
=>\(\left(x^2-6x+11\right)\left(y^2+2y+4\right)\ge2.3=6\)
Mà \(4z-z^2+2=6-\left(z^2-4z+4\right)=6-\left(z-2\right)^2\le6\)
=>VT>=VP
Dấu = xảy ra tự tìm nhé ^^
3)
Ta có \(BĐT\Leftrightarrow a^4-4a+3\ge0\Leftrightarrow a^4-2a^2+1+2a^2-4a+1\ge0\)
\(\Leftrightarrow\left(a^2-1\right)^2+2\left(a^2-2a+1\right)\ge0\Leftrightarrow\left(a^2-1\right)^2+2\left(a-1\right)^2\ge0\left(lđ\right)\)
=> BĐt cần chứng minh luôn đúng
Dấu = xảy ra <=> a=1 nhé, có dấu = bạn nhé
^^
Bài 1:
a.
Thay x = 1 là nghiệm của pt, ta được:
\(1^3+a.1^2-4.1-4=0\)
\(\Leftrightarrow1+a-4-4=0\)
\(\Leftrightarrow1+a-8=0\)
\(\Leftrightarrow a-7=0\)
\(\Leftrightarrow a=7\)
b.
Với a = 7 ta được:
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow x^3-x^2+8x^2-8x+4x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+8x+4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+8x+4=0\end{matrix}\right.\)
Ta có:
\(x^2+8x+4=x^2+2.x.4+4^2-12\)
\(=\left(x+4\right)^2-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)
Vậy. \(\left[{}\begin{matrix}x=1\\x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)
a, \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x+3\right)\left(x-1\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x-1\right)\left(x+3\right)}+\frac{18\left(x+1\right)}{\left(x+3\right)\left(x-1\right)\left(x+1\right)}=\frac{\left(2x-5\right)\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)\left(x+1\right)}\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x+5\right)\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x+5x^2-5\)
\(\Leftrightarrow-x^2+14x+23=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=7-6\sqrt{2}\\x=7+6\sqrt{2}\end{cases}}\)
Vậy...