K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\left(m-n\right)\left(m+n\right)\)

b: \(=\left(x^2+x-1-x^2-2x-3\right)\left(x^2+x-1+x^2+2x+3\right)\)

\(=\left(-x-4\right)\left(2x^2+3x+2\right)\)

d: \(=\left(y+8\right)^2\)

19 tháng 7 2018

a)   \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)

b)  \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2=\left(x^2+x+1+x^2+2x+3\right)\left(x^2+x+1-x^2-2x-3\right)\)

\(=-\left(2x^2+3x+4\right)\left(x+2\right)\)

d)  \(64+16y+y^2=\left(8+y\right)^2\)

c) mk chỉnh đề:

\(16-\left(x-3\right)^2=\left(4+x-3\right)\left(4-x+3\right)=\left(x+1\right)\left(7-x\right)\)

19 tháng 7 2018

ồ cuk dễ nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 
27 tháng 7 2018

a) \(m^2-n^2=\left(m-n\right)\left(m+n\right)\)

b) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2\)

\(=\left(x^2+x-1+x^2+2x+3\right)\left(x^2+x-1-x^2-2x-3\right)\)

\(=\left(2x^2+3x+2\right)\left(-4-x\right)\)

c) \(-16+\left(x-3\right)^2=\left(x-3\right)^2-16=\left(x-3-4\right)+\left(x-3+4\right)=\left(x-7\right)\left(x+1\right)\)

d) \(64+16y+y^2\)

\(=8^2+2.8.y+y^2\)

\(=\left(8+y\right)^2\)

8 tháng 6 2018

Giải:

a) \(\left(x^2+x-1\right)^2-\left(x^2+2x+3\right)^2\)

\(=\left[\left(x^2+x-1\right)-\left(x^2+2x+3\right)\right]\left[\left(x^2+x-1\right)+\left(x^2+2x+3\right)\right]\)

\(=\left(x^2+x-1-x^2-2x-3\right)\left(x^2+x-1+x^2+2x+3\right)\)

\(=\left(-x-4\right)\left(2x^2+3x+2\right)\)

Vậy ...

b) \(-16+\left(x-3\right)^2\)

\(=\left(x-3\right)^2-16\)

\(=\left(x-3\right)^2-4^2\)

\(=\left(x-3-4\right)\left(x-3+4\right)\)

\(=\left(x-7\right)\left(x+1\right)\)

Vậy ...

c) \(64+16y+y^2\)

\(=8^2+2.8.y+y^2\)

\(=\left(8+y\right)^2\)

Vậy ...

27 tháng 6 2017

Bài 1:

a) -16 +(x-3)2

<=> (x-3)2-16

<=> (x-3)2 -42

<=> (x-3-4)(x-3+4)

<=> (x-7)(x+1)

b) 64+16y+y2

<=> y2 + 2.8.y + 82

<=> (y+8)2

c) \(\dfrac{1}{8}-8x^3\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^3-\left(2x\right)^3\)

\(\Leftrightarrow\left(\dfrac{1}{2}-2x\right)\left(\dfrac{1}{4}+x+4x^2\right)\)

d)\(x^2-x+\dfrac{1}{4}\)

\(\Leftrightarrow x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\)

e) x4 + 4x2 + 4

<=> (x2)2 + 2.2.x2 +22

<=> (x2 + 2)2

g)\(8x^3+60x^2y+150xy^2+125y^3\)

\(\Leftrightarrow\left(2x+5y\right)^3\)

28 tháng 6 2017

Ban giup minh bai 2 luon voi nha Hậu Trần Công

24 tháng 7 2018

a, m^2 - n^2 
= (m-n)^2 + 2mn

7 tháng 7 2018

\(a.9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right)\left(3a+5b^2\right)\)

\(b.\left(2x+y\right)^2-1=\left(2x+y-1\right)\left(2x+y+1\right)\)

\(c.\left(x+y+z\right)^2-\left(x-y-z\right)^2=\left[\left(x+y+z\right)+\left(x-y-z\right)\right]\left[\left(x+y+z\right)\right]-\left(x-y-z\right)\\ =2x.\left(2y+2z\right)\)

7 tháng 7 2018

a) \(9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right)\left(3a+5b^2\right)\)

b) \(\left(2x+y\right)^2-1=\left(2x+y\right)^2-1^2=\left(2x+y+1\right)\left(2x+y-1\right)\)

c) \(\left(x+y+z\right)^2-\left(x-y-z\right)^2=\left(x+y+z+x-y-z\right)\left(x+y+z-x+y+z\right)\)

                                                              \(=2x\left(2y+2z\right)\)

27 tháng 6 2018

\(x^2+6x+9=\left(x+3\right)^2\)

--

\(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)

--

\(x^3+12x^2+48x+64=\left(x+4\right)^3\)

28 tháng 6 2018

1) \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}\)

\(=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\dfrac{2x^2+50}{x^2+25}\)

\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\)

2) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)

\(=x^3+3^3-54-x^3\)

\(=27-54=-27\)

3) \(\left(2x+y\right)^2-\left(y+3x\right)^2\)

\(=4x^2+4xy+y^2-y^2-6xy-9x^2\)

\(=-5x^2-2xy\)

4) \(\left(2x+1\right)^3-\left(2x-1\right)^3-24x^2\)

\(=8x^3+12x^2+6x+1-8x^3+12x^2-6x+1-24x^2\)

\(=2\)

29 tháng 7 2018

Cảm ơn bn nha

14 tháng 10 2019

b) \(-4x^2-4x-1\)

\(=-\left(4x^2+4x+1\right)\)

\(=-\left(2x+1\right)^2\)

c) \(\frac{4}{9}x^2-25y^2\)

\(=\left(\frac{2}{3}x+5y\right)\left(\frac{2}{3}x-5y\right)\)

d) \(\frac{1}{27}x^3-8\)

\(=\left(\frac{1}{3}x-2\right)\left(\frac{1}{9}x+\frac{2}{3}x+4\right)\)