Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi giao diem cua tia AE va DN la G
a.Ta co:\(\widehat{G}=\widehat{AME}\)(cung phu \(\widehat{GEC}\))(1)
\(\widehat{G}+\widehat{ANG}=90^0\)
\(\widehat{AME}+\widehat{AEM}=90^0\)
\(\Rightarrow\widehat{ANG}=\widehat{AEM}\) (2)
Tu (1) va (2) suy ra:\(\Delta AGN=\Delta AME\left(g-g-g\right)\)
Suy ra:\(AN=AE\)(2 canh tuong ung)
b,Ta co:\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)
\(\Rightarrow\frac{1}{AM^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\left(AE=AN\right)\)
A B C D F E
Vì AB//CF( ABCD là HCN) \(\Rightarrow\dfrac{AB}{AE}=\dfrac{CF}{EF}\)( theo định lý thales)
\(\Rightarrow\dfrac{AB^2}{AE^2}=\dfrac{CF^2}{EF^2}\)
có: AD//CE nên \(\dfrac{AD}{AF}=\dfrac{CE}{EF}\)(hệ quả định lý thales)\(\Rightarrow\dfrac{AD^2}{AF^2}=\dfrac{CE^2}{EF^2}\)
do đó \(\dfrac{AB^2}{AE^2}+\dfrac{AD^2}{AF^2}=\dfrac{CE^2+CF^2}{EF^2}=1\)
mà AB=m.AD.---> thay vào ta có:
\(\dfrac{m^2.AD^2}{AE^2}+\dfrac{AD^2}{AF^2}=1\Leftrightarrow\dfrac{m^2}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{AD^2}\)
Nhân thêm với m2. \(\dfrac{1}{AD^2}=\dfrac{m^2}{\left(AD.M\right)^2}=\dfrac{m^2}{AB^2}\)
Ta có đpcm
P/s: có hứng mới làm thôi nhá :v
A B D C N M E
Từ A kẻ đường thẳng vuông góc với AN cắt CD tại E
Ta có AB=mAD nên \(\frac{AB}{AD}=m\)
Xét \(\Delta ABM\)và \(\Delta ADE\)có :
góc ABM = góc ADE =90
góc BAM =góc FAD (cùng phụ với góc DAN )
\(\Rightarrow\Delta ABM~\Delta ADF\left(g.g\right)\)\(\Rightarrow\frac{AM}{AF}=\frac{AB}{AD}=m\)\(\Rightarrow\frac{1}{AF}=\frac{m}{AM};\frac{1}{AD}=\frac{m}{AB}\)
Tam giác AFN VUÔNG TẠI A CÓ \(AD⊥FN\)\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AF^2}+\frac{1}{AN^2}\)
HAY \(\left(\frac{m}{AB}\right)^2=\left(\frac{m}{AM}\right)^2+\frac{1}{AN^2}\Rightarrow\frac{m^2}{AB^2}=\frac{m^2}{AM^2}+\frac{1}{AN^2}\left(đpcm\right)\)