K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 4 2022

Chắc đề là \(SM=a\sqrt{3}\) vì không có điểm H nào trong dữ liệu

\(BC=AD=\sqrt{BD^2-AB^2}=a\sqrt{2}\)

a.

Qua M kẻ đường thẳng song song BC cắt CD tại E

\(\Rightarrow CD\perp ME\Rightarrow CD\perp\left(SME\right)\)

\(\Rightarrow\widehat{SEM}\) là góc giữa (SCD) và (ABCD)

Áp dụng định lý talet trong tam giác BCD:

\(\dfrac{EM}{BC}=\dfrac{DM}{BD}=\dfrac{3}{4}\Rightarrow EM=\dfrac{3}{4}BC=\dfrac{3a\sqrt{2}}{4}\)

\(\Rightarrow tan\widehat{SEM}=\dfrac{SM}{EM}=\dfrac{2\sqrt{6}}{3}\)

\(\Rightarrow\widehat{SEM}\approx58^031'\)

NV
7 tháng 4 2022

b.

\(BC||AD\Rightarrow BC||\left(SAD\right)\)

\(\Rightarrow d\left(BC;AD\right)=d\left(BC;\left(SAD\right)\right)=d\left(B;\left(SAD\right)\right)\)

Lại có: BM cắt (SAD) tại D, mà \(BD=\dfrac{4}{3}MD\)

\(\Rightarrow d\left(B;\left(SAD\right)\right)=\dfrac{4}{3}d\left(M;\left(SAD\right)\right)\)

Trong mp (ABCD), từ M kẻ \(MH\perp AD\)

Trong mp (SMH), từ M kẻ \(MK\perp SH\)

\(\Rightarrow MK\perp\left(SAD\right)\Rightarrow MK=d\left(M;\left(SAD\right)\right)\)

Talet cho tam giác ABD:

\(\dfrac{MH}{AB}=\dfrac{MD}{BD}=\dfrac{3}{4}\Rightarrow MH=\dfrac{3}{4}AB=\dfrac{3a}{4}\)

Hệ thức lượng trong tam giác vuông SMH:

\(MK=\dfrac{SM.MH}{\sqrt{SM^2+MH^2}}=\dfrac{3a\sqrt{19}}{19}\)

\(\Rightarrow d\left(SD;BC\right)=\dfrac{4}{3}MK=\dfrac{4\sqrt{19}}{19}\)

14 tháng 1 2019

ĐÁP ÁN: C

 

 

17 tháng 5 2022

S A B C D H E K F

Ta có

\(SH\perp\left(ABCD\right);SH\in\left(SBD\right)\Rightarrow\left(SBD\right)\perp\left(ABCD\right)\)

Trong mp (ABCD) từ C dựng đường thẳng vuông góc với BD cắt BD tại F ta có

\(SH\perp\left(ABCD\right);CF\in ABCD\Rightarrow SH\perp CF\)

Mà \(CF\perp BD\)

Ta có \(BD\in\left(SBD\right);SH\in\left(SBD\right)\)

\(\Rightarrow CF\perp\left(SBD\right)\) => CF là khoảng cách từ C đến (SBD)

Trong mp (ABCD) nối CH cắt AD tại E

Ta có BC//AD \(\Rightarrow\dfrac{BC}{ED}=\dfrac{HB}{HD}=\dfrac{HC}{HE}=1\Rightarrow ED=BC=\dfrac{3a}{2}\)

\(\Rightarrow EA=AD-ED=3a-\dfrac{3a}{2}=\dfrac{3a}{2}=BC\)

Mà BC//AE và \(\widehat{ABC}=90^o\)

=> ABCE là hình chữ nhật 

Trong mp (ABCD) từ H dựng đường thẳng vuông góc với CD cắt CD tại K

Xét tg vuông CDE có

\(CD=\sqrt{CE^2+ED^2}=\sqrt{4a^2+\dfrac{9a^2}{4}}=\dfrac{5a}{2}\)

Xét tg vuông ABD có

\(BD=\sqrt{AB^2+AD^2}=\sqrt{4a^2+9a^2}=a\sqrt{13}\)

\(\Rightarrow HB=HD=\dfrac{BD}{2}=\dfrac{a\sqrt{13}}{2}\)

Xét tg vuông CKH và tg vuông CED có \(\widehat{ECD}\) chung

=> tg CKH đồng dạng với tg CED (g.g.g)

\(\Rightarrow\dfrac{CK}{CE}=\dfrac{HC}{CD}\Rightarrow CK=\dfrac{CE.HC}{CD}=\dfrac{2a.a}{\dfrac{5a}{2}}=\dfrac{4a}{5}\)

Xét tg vuông CKH có

\(HK=\sqrt{HC^2-CK^2}=\sqrt{a^2-\dfrac{16a^2}{25}}=\dfrac{3a}{5}\)

Xét tg vuông DKH và tg vuông DFC có \(\widehat{BDC}\) chung

=> tg DKH đồng dạng với tg DFC (g.g.g)

\(\Rightarrow\dfrac{HK}{CF}=\dfrac{HD}{CD}\Rightarrow CF=\dfrac{HK.CD}{HD}=\dfrac{\dfrac{3a}{5}.\dfrac{5a}{2}}{\dfrac{a\sqrt{13}}{2}}=\dfrac{3a\sqrt{13}}{13}\)

 

 

 

 

1: AC=căn a^2+a^2=a*căn 2

=>SC=căn SA^2+AC^2=a*căn 8

SB=căn AB^2+SA^2=a*căn 7

Vì SB^2+BC^2=SC^2

nên ΔSBC vuông tại B

=>SB vuông góc BC

9 tháng 12 2019

Đáp án C

Gọi M là trung điểm của CD. Kẻ HK vuông góc với SM.

Ta có: 

Mặt khác ta có HK ⊥ SM

Suy ra HK(SCD)

Vậy 

Xét tam giác BHC vuông tại B, ta có:

Xét tam giác SHM vuông tại H, ta có: 

8 tháng 5 2021

\(\dfrac{\sqrt{2}}{2}\)a

8 tháng 5 2021

d(h,(scd))=a\(\dfrac{\sqrt{2}}{2}\)