K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: SA\(\perp\)(ABC)

=>SA\(\perp\)AB; SA\(\perp\)AC; SA\(\perp\)BC

=>ΔSAB vuông tại A và ΔSAC vuông tại A

Ta có: ΔABC vuông cân tại B

=>BA=BC=a và \(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\widehat{SA;AB}=\widehat{SAB}=90^0\)

b: \(\widehat{SB;BA}=\widehat{SBA}\)

Xét ΔSAB vuông tại A có \(tanSBA=\dfrac{SA}{AB}=\dfrac{a\sqrt{2}}{a}=\sqrt{2}\)

nên \(\widehat{SBA}\simeq54^044'\)

=>\(\widehat{SB;BA}\simeq54^044'\)

a: \(\widehat{SB;AB}=\widehat{SBA}\)

SA\(\perp\)(ABC)

=>\(SA\perp AB;SA\perp AC;SA\perp BC\)

Xét ΔSAB vuông tại A có \(tanSBA=\dfrac{SA}{AB}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

=>\(\widehat{SBA}=60^0\)

=>\(\widehat{SB;AB}=60^0\)

b:

\(\widehat{SC;AC}=\widehat{SCA}\)

Xét ΔSAC vuông tại A có \(tanSCA=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

nên \(\widehat{SCA}=60^0\)

=>\(\widehat{SC;AC}=60^0\)

c: ΔABC đều có AM là đường trung tuyến

nên \(AM=BC\cdot\dfrac{\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\)

Ta có: SA\(\perp\)(ABC)

AM\(\subset\)(ABC)

Do đó: SA\(\perp\)AM

=>ΔSAM vuông tại A

\(\widehat{SM;AM}=\widehat{SMA}\)

Xét ΔSMA vuông tại A có \(tanSMA=\dfrac{SA}{AM}=\dfrac{a\sqrt{3}}{\dfrac{a\sqrt{3}}{2}}=2\)

=>\(\widehat{SMA}\simeq63^026'\)

=>\(\widehat{SM;AM}\simeq63^026'\)

NV
16 tháng 1 2024

a.

Góc giữa SB và AB là góc \(\widehat{SBA}\)

Trong tam giác vuông SAB:

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

\(\Rightarrow\widehat{SBA}=60^0\)

b.

Góc giữa SC và AC là góc \(\widehat{SCA}\)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)

c.

Góc giữa SM và AM là góc \(\widehat{SMA}\)

AM là trung tuyến tam giác đều \(\Rightarrow AM=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow tan\widehat{SMA}=\dfrac{AM}{SA}=2\Rightarrow\widehat{SMA}=60^026'\)

16 tháng 3 2017

  Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Hình chiếu vuông góc của SI trên mặt phẳng (ABC) là AI nên góc giữa SI và mặt phẳng (ABC) là:

(vì tam giác SIA vuông tại A nên góc SIA nhọn) ⇒ Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Xét tam giác SIA vuông tại A, Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) nên:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

+) Dựng hình bình hành ACBD, tam giác ABC đều nên tam giác ABD đều.

+) Ta có:

   AC // BD; BD ⊂ (SBD) nên AC // (SBD).

   mà SB ⊂ (SBD) nên d(AC, SB) = d(A, (SBD)).

- Gọi K là trung điểm đoạn BD, tam giác ABD đều suy ra AK ⊥ BD và Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3) mà BD ⊥ SA nên BD ⊥ (SAK).

- Dựng AH ⊥ SK; H ∈ SK.

- Lại có AH ⊥ BD suy ra AH ⊥ (SBD).

- Vậy d(A, (SBD)) = AH.

- Xét tam giác SAK vuông tại vuông tại A, đường cao AH ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Vậy d(AC, SB) = d(A, (SBD)) 

Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

30 tháng 5 2022

Do SA ⊥ (ABCD) ⇒ \(\left\{{}\begin{matrix}SA\perp AB\\SA\perp AC\\SA\perp BC\end{matrix}\right.\)

Mà BC ⊥ AC ⇒ BC ⊥ (SAC) ⇒ BC ⊥ SC và BC ⊥ AH

Do BC ⊥ AH và AH ⊥ SC ⇒ AH ⊥ (SBC) ⇒ AH ⊥ KH ⇒ \(\widehat{AHK}=90^0\)

ΔSAB và ΔSAC vuông tại A

Mà AH và AK lần lượt là đường cao của ΔSAB và ΔSAC

⇒ \(\left\{{}\begin{matrix}SA^2=SK.SB\\SA^2=SH.SC\end{matrix}\right.\)

⇒ SK . SB = SH . SC

⇒ \(\dfrac{SK}{SH}=\dfrac{SC}{SB}\) ⇒ ΔSKH \(\sim\) ΔSCB ⇒ \(\widehat{SKH}=\widehat{SCB}=90^0\)

⇒ HK ⊥ SB

Mà AK⊥ SB

⇒ ((SAB),(SCB)) = (AK,AH) = \(\widehat{KAH}\) = 450 (đây là góc nhọn, vì \(\widehat{AHK}=90^0\))

⇒ ΔHAK vuông cân tại H ⇒ AK = \(\sqrt{2}AH\)

Ta có : \(\dfrac{S_{SAC}}{S_{SAB}}=\dfrac{\dfrac{1}{2}.AH.SC}{\dfrac{1}{2}AK.SB}=\dfrac{\dfrac{1}{2}.SA.AC}{\dfrac{1}{2}.SA.AB}\)

⇒ \(\dfrac{AH.SC}{AK.SB}=\dfrac{SA.AC}{SA.AB}\)

⇒ \(\dfrac{1}{\sqrt{2}}\) . \(\dfrac{SC}{SB}\) = \(\dfrac{AC}{AB}\). Mà AC = a và AB = 2a

⇒ \(\dfrac{1}{\sqrt{2}}\)\(\dfrac{SC}{SB}\) = \(\dfrac{1}{2}\) ⇒ \(\dfrac{SC^2}{SB^2}\) = \(\dfrac{1}{2}\) . Mà SB2 - SC2 = BC2 = 3a2

⇒ \(\left\{{}\begin{matrix}SC^2=3a^2\\SB^2=6a^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}SB=a\sqrt{6}\\SC=a\sqrt{3}\end{matrix}\right.\) ⇒ SA = a\(\sqrt{2}\)

Từ đó ta tính được SH = \(\dfrac{2a\sqrt{3}}{3}\) và SK = \(\dfrac{a\sqrt{6}}{3}\)

Gọi M là trung điểm của SB thì ta có CM // HK (cùng vuông góc với SB)

Khoảng cách từ HK đến AC bằng khoảng cách từ HK đến (AMC)

 

30 tháng 5 2022

bn ơi cho mình hỏi sao gọi M là tđ sb thì suy ra cm ss vs hk dc nhỉ

 

21 tháng 6 2018

 

Đáp án B

Hình chiếu của S xuống đáy ABC là tâm của đáy tức là M với M là trung điểm của BC.

Ta có 

Vì ABC là tam giác vuông cân nên H cũng là trung điểm của  vì thế 

Ta có:  =  a 2 2

 

29 tháng 9 2019

 

Đáp án B

Gọi I là hình chiếu của điểm S trên mặt phẳng (ABC). Do SA = SB = SC nên IA = IB = IC => I là tâm đường tròn ngoại tiếp ∆ ABC . Mà ABC vuông cân tại A nên I là trung điểm của BC và IA = IB = IC = BC/2 =  a 2 2

Ta có IA là hình chiếu của SA trên mặt phẳng (ABC) nên 

Do ∆ SIA vuông tại I nên  vuông cân tại I, khi đó :

 

a: BC vuông góc AM

BC vuông góc SA

=>BC vuông góc (SAM)

b: BC vuông góc (SAM)

=>BC vuông góc SM

=>(SM;(ABC))=90 độ

 

NV
14 tháng 3 2022

Dựng hình vuông ABDC

\(\Rightarrow SA=SB=SC=SD=2\) ; \(CD=AB=2\)

\(CD||AB\Rightarrow\widehat{\left(AB;SC\right)}=\widehat{\left(CD;SC\right)}=\widehat{SCD}\)

Tam giác SCD có \(SC=SD=CD\Rightarrow\Delta SCD\) đều

\(\Rightarrow\widehat{SCD}=60^0\)

27 tháng 10 2017

Đáp án B

9 tháng 5 2017

 

 

Đáp án A

Do  SA (ABC) tại A nên A là hình chiếu của S lênmặt phẳng (ABC) kéo theo AE  là hình chiếu của AE lên mặt phẳng (ABC).

Áp dụng định lý Py-ta-go trong  ∆ S A E  vuông tại B, ta có:

Trong  ∆ S A E  vuông tại A SA (ABC) nên  SA ⊥ AE, ta có: