K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TC
Thầy Cao Đô
Giáo viên VIP
22 tháng 12 2022

Thầy gợi ý cách xác định thiết diện thông qua hình vẽ sau:

loading...

Em kéo dài KN cắt AC tại P (trong mp(ABC)), từ đó tiếp tục dựng hình để xác định giao tuyến với các mặt còn lại của hình chóp để có thiết diện là tứ giác KMQN nhé

17 tháng 1 2018

Chọn đáp án A

Trong mặt phẳng (ABC), gọi E = NP ∩ AC

Khi đó Q chính là giao điểm của SC với EM

Áp dụng định lý Menelaus vào tam giác ABC ta có:

Áp dụng định lý Menelaus vào tam giác SAC ta có:

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Gọi \(J=IP\cap SC\), ta có \(J=SC\cap\left(MNP\right)\)

Gọi \(E=NP\cap CD\), ta có \(E=CD\cap\left(MNP\right)\)

Gọi \(K=JE\cap SD\), ta có \(K=SD\cap\left(MNP\right)\)

26 tháng 12 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a lần lượt tìm giao điểm của mặt phẳng (MNP) với các đường thẳng chứa các cạnh của hình chóp.

Gọi I = MN ∩ SB

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy I = SB ∩ (MNP).

Từ đó, làm tương tự ta tìm được giao điểm của (MNP) với các cạnh còn lại.

Cụ thể :

Gọi J = IP ∩ SC, ta có J = SC ∩ (MNP)

Gọi E = NP ∩ CD, ta có E = CD ∩ (MNP)

Gọi K = JE ∩ SD, ta có K = SD ∩ (MNP)

29 tháng 3 2017

Đáp án A

Vì tam giác đều nên 

16 tháng 10 2023

a:

1: \(M\in SB\subset\left(SAB\right)\)

\(M\in\left(MNP\right)\)

Do đó: \(M\in\left(SAB\right)\cap\left(MNP\right)\)(1)

\(N\in AB\subset\left(SAB\right)\)

\(N\in\left(MNP\right)\)

Do đó: \(N\in\left(SAB\right)\cap\left(MNP\right)\left(2\right)\)

Từ (1),(2) suy ra \(\left(SAB\right)\cap\left(MNP\right)=MN\)

2:

\(M\in SB\subset\left(SBC\right);M\in\left(MNP\right)\)

=>\(M\in\left(SBC\right)\cap\left(MNP\right)\)(3)

\(P\in BC\subset\left(SBC\right);P\in\left(MNP\right)\)

=>\(P\in\left(SBC\right)\cap\left(MNP\right)\)(4)

Từ (3),(4) suy ra \(\left(SBC\right)\cap\left(MNP\right)=MP\)

3:

\(N\in AB\subset\left(ABC\right);N\in\left(MNP\right)\)

=>\(N\in\left(ABC\right)\cap\left(MNP\right)\)(5)

\(P\in BC\subset\left(ABC\right);P\in\left(MNP\right)\)

=>\(P\in\left(ABC\right)\cap\left(MNP\right)\left(6\right)\)

Từ (5),(6) suy ra \(\left(ABC\right)\cap\left(MNP\right)=NP\)

b: Xét ΔBAS có BN/BA=BM/BS

nên NM//AS

=>MN//(SAC)

8 tháng 5 2018

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


Ta có M, N lần lượt là trung điểm của SA, SC

Do đó, tam giác SAC có MN // AC (1)

Ta có: \(\frac{{BP}}{{BA}} = \frac{{BQ}}{{BC}} = \frac{1}{3}\)

Suy ra: PQ // AC (2)

Từ (1) và (2), suy ra: MN // PQ