K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =>vecto BM+vecto MA=vecto BA

=>vecto BA=vecto BA(Luôn đúng)

b: =>vecto BA=vecto AB(loại)

c: =>vecto BA+vecto MC=vecto BA

=>vecto MC=vecto 0

=>M trùng với C

NV
7 tháng 10 2020

\(\left\{{}\begin{matrix}\overrightarrow{MN}=\overrightarrow{AB}\\\overrightarrow{MN}=\overrightarrow{DC}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\) ABCD là hbh

5 tháng 9 2019

a) \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\Rightarrow2\overrightarrow{IA}-\overrightarrow{IA}-\overrightarrow{AB}+\overrightarrow{IA}+\overrightarrow{AC}=\overrightarrow{0}\)

\(\Rightarrow2\overrightarrow{AI}=\overrightarrow{AC}-\overrightarrow{AB}\Rightarrow\overrightarrow{AB}+2\overrightarrow{AI}=\overrightarrow{AC}\). Từ đó suy ra cách dựng điểm I:

A B C I

b) Với cách lấy điểm I như trên, ta có điểm I cố định. Khi đó MN đi qua I, thật vậy:

\(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}+2\overrightarrow{IA}-\overrightarrow{MI}-\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}\)

\(=2\overrightarrow{MI}+\left(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}\right)=2\overrightarrow{MI}\)

Suy ra I là trung điểm MN hay MN đi qua điểm I cố định (đpcm).

c) \(\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MB}+\frac{1}{2}\overrightarrow{MN}=\overrightarrow{MA}+\frac{1}{2}\overrightarrow{MC}\)

Đặt K là điểm sao cho \(\overrightarrow{KA}+\frac{1}{2}\overrightarrow{KC}=\overrightarrow{0}\Rightarrow\hept{\begin{cases}K\in\left[AC\right]\\KA=\frac{1}{2}KC\end{cases}}\)tức K xác định

Khi đó \(\overrightarrow{MP}=\overrightarrow{MK}+\overrightarrow{KA}+\frac{1}{2}\overrightarrow{MK}+\frac{1}{2}\overrightarrow{KC}=\frac{3}{2}\overrightarrow{MK}\), suy ra MP đi qua K cố định (đpcm).

29 tháng 9 2017

Ta có: \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)

\(\Leftrightarrow\overrightarrow{MN}=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)

\(\Leftrightarrow\overrightarrow{MN}=4\overrightarrow{MO}\)(Vì O là trung điểm của AC và BD)

=> M,N,O thẳng hàng.

Vậy đường thẳng MN luôn đi qua điểm O cố định