K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2023

a: CI+BI=CB

=>\(\dfrac{3}{2}BI+BI=CB\)

=>\(\dfrac{5}{2}BI=CB\)

=>\(BI=\dfrac{2}{5}BC\)

=>\(CI=\dfrac{3}{2}\cdot BI=\dfrac{3}{2}\cdot\dfrac{2}{5}CB=\dfrac{3}{5}CB\)

\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}\)

\(=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\)

\(=\dfrac{3}{5}\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{AC}\)

JB=2/5JC mà J không nằm trong đoạn thẳng BC

nên B nằm giữa J và C

=>JB+BC=JC

=>\(BC+\dfrac{2}{5}JC=JC\)

=>\(BC=\dfrac{3}{5}JC\)

\(\dfrac{JB}{BC}=\dfrac{\dfrac{2}{5}JC}{\dfrac{3}{5}JC}=\dfrac{2}{5}:\dfrac{3}{5}=\dfrac{2}{3}\)

=>\(JB=\dfrac{2}{3}BC\)

\(\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}\)

\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}-\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{BA}-\dfrac{2}{3}\overrightarrow{AC}=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AC}\)

b:

Gọi giao điểm của AG với BC là M

G là trọng tâm của ΔABC

nên AG cắt BC tại trung điểm M của BC

=>\(AG=\dfrac{2}{3}AM\)

Xét ΔABC có AM là trung tuyến

nên \(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

=>\(\overrightarrow{AG}=\dfrac{2}{3}\cdot\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

Đặt \(\overrightarrow{AG}=x\cdot\overrightarrow{AI}+y\cdot\overrightarrow{AJ}\)

\(\overrightarrow{AG}=\dfrac{1}{3}\cdot\overrightarrow{AB}+\dfrac{1}{3}\cdot\overrightarrow{AC};\overrightarrow{AI}=\dfrac{3}{5}\cdot\overrightarrow{AB}+\dfrac{2}{5}\cdot\overrightarrow{AC};\overrightarrow{AJ}=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{2}{3}\cdot\overrightarrow{AC}\)

Ta có hệ phương trình sau:

\(\left\{{}\begin{matrix}\dfrac{1}{3}=x\cdot\dfrac{3}{5}+y\cdot\dfrac{5}{3}\\\dfrac{1}{3}=x\cdot\dfrac{2}{5}+y\cdot\dfrac{-2}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\cdot\dfrac{3}{5}+y\cdot\dfrac{5}{3}=\dfrac{1}{3}\\x\cdot\dfrac{2}{5}+y\cdot\dfrac{-2}{3}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+25y=5\\6x-10y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}18x+50y=10\\18x-30y=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}80y=-5\\6x-10y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{16}\\6x=10y+5=-\dfrac{5}{8}+5=\dfrac{35}{8}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{16}\\x=\dfrac{35}{48}\end{matrix}\right.\)

Vậy: \(\overrightarrow{AG}=\dfrac{35}{48}\overrightarrow{AI}-\dfrac{1}{16}\overrightarrow{AJ}\)

30 tháng 10 2021

undefined

27 tháng 10 2023

Bài 1:

Gọi K là trung điểm của BC

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔCAB có

O,K lần lượt là trung điểm của CA,CB

=>OK là đường trung bình

=>OK//AB và \(OK=\dfrac{AB}{2}\)

=>\(\overrightarrow{OK}=\dfrac{\overrightarrow{AB}}{2}\)

=>\(\overrightarrow{AB}=2\cdot\overrightarrow{OK}\)

Xét ΔOBC có OK là đường trung tuyến

nên \(\overrightarrow{OB}+\overrightarrow{OC}=2\cdot\overrightarrow{OK}\)

=>\(\overrightarrow{AB}=\overrightarrow{OB}+\overrightarrow{OC}\)

=>M trùng với B

Bài 2:

Xét ΔABC có

M,P lần lượt là trung điểm của AB,AC

=>MP là đường trung bình của ΔABC

=>MP//BC và MP=BC/2

=>MP=CN

mà MP//NC

nên MPCN là hình bình hành

=>\(\overrightarrow{MP}=\overrightarrow{NC}\)

=>\(\overrightarrow{MP}=-\overrightarrow{CN}\)

=>\(\overrightarrow{MP}+\overrightarrow{CN}=\overrightarrow{0}\)

mà \(\overrightarrow{MK}+\overrightarrow{CN}=\overrightarrow{0}\)

nên K trùng với P

Bài 3: 

Tham khảo:

image

17 tháng 11 2022

Câu 1:

vecto AM+vecto BN+vecto CP

=1/2(vecto AB+vecto AC+vecto BA+vecto BC+vecto CA+vecto CB)

=1/2*vecto 0

=vecto 0

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)