Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hbh nên => AB=DC, AD=BC
có M là tđ của AB, P là trung điểm của DC mà AB=DC=>MB=DP (1)
N là tđ của BC, Q là tđ của AD mà AD=BC=> QD=BN (2)
Có góc QDB=góc MBN (ABCD là hbh) (3)
(1),(2),(3)=> tam giác MPN=tam giác QDP=>QP=MN
tương tự, cm QM=PN=> tứ giác QMNP có QM=BN, QP=MN => Tứ giác MNPQ là hbh( có hai cặp cạnh đối bằng nhau)
a: Xét ΔBAC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình
=>MN//AC và \(MN=\dfrac{AC}{2}\left(1\right)\)
Xét ΔDAC có
Q,P lần lượt là trung điểm của DA,DC
=>QP là đường trung bình
=>QP//AC và \(QP=\dfrac{AC}{2}\left(2\right)\)
Từ (1),(2) suy ra MN=PQ
b: MN//AC
PQ//AC
Do đó: MN//PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
Do đó: MNPQ là hình bình hành
a: Xét ΔABC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
Xét ΔCDA có DP/DC=DQ/DA
nên PQ//CA và PQ=AC/2
=>MN//PQ và MN=PQ
b: Xét tứ giác MNPQ có
MN//PQ
MN=PQ
=>MNPQ là hình bình hành
Xét tứ giác ABD có : AQ=QD ;AM=MB
suy ra MQ là đường trung bình của tam giác ABD
vậy MQ= 1/2 BD và MQ song song với BD*
Xét tam giác CDB có : PD=PC;NC=NB
suy ra NP là đường trung bình của tam giác CDB
vậy NP song song với BD và NP =1/2 BD**
từ *và ** suy ra MQ song song với MP
MQ =MP
vậy tứ giác MNPQ là HBH
a: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2
Xét ΔCBD có CP/CD=CN/CB
nên NP//BD và NP=BD/2
=>MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: KHi ABCD là hình thoi thì AC vuông góc với BD
=>MQ vuông góc với MN
=>MNPQ là hình chữ nhật
c: khi ABCD là hình chữ nhật thì AC=BD
=>MN=MQ
=>MNPQ là hình thoi
a: Xét ΔABD có M,Q lần lượt là trung điểm của AB,AD
=>MQ là đường trung bình
=>MQ//BD và MQ=BD/2
Xét ΔCBD có
P,N lần lượt là trung điểm của CD,CB
=>PN là đường trung bình
=>PN//BD và PN=BD/2
=>MQ//PN và MQ=PN
Xét tứ giác MNPQ có
MQ//PN
MQ=PN
=>MNPQ là hình bình hành
Xét ΔCAB có
I,N lần lượt là trung điểm của CA,CB
=>IN là đường trung bình
=>IN//AB và IN=AB/2
Xét ΔDAB có K,Q lần lượt là trung điểm của DB,DA
=>KQ là đường trung bình
=>KQ//AB và KQ=AB/2
=>IN//KQ và IN=KQ
=>INKQ là hình bình hành
b: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường(1)
INKQ là hình bình hành
=>IK cắt NQ tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra MP,NQ,IK đồng quy
a: Xét ΔBAC có BM/BA=BN/BC=1/2
nên MN//AC và MN=1/2AC
Xét ΔDAC có DQ/DA=DP/DC
nên PQ//AC và PQ=1/2AC
=>MN//PQ và MN=PQ
b: Xét tứ giác MNPQ có
MN//PQ
MN=PQ
=>MNPQ là hình bình hành