K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2023

loading...

a) Vì ABCD là hình bình hành nên AB = CD, AB // CD.

Mà E, F lần lượt là trung điểm của AB, CD nên AE = BE = 1221AB, CF = DF = 1221CD

Do đó AE = BE = CF = DF.

Xét tứ giác AEFD có:

     AE // DF (vì AB // CD);

     AE = DF (chứng minh trên)

Do đó tứ giác AEFD là hình bình hành.

Xét tứ giác AECF có:

     AE // CF (vì AB // CD);

     AE = CF (chứng minh trên)

Do đó tứ giác AECF là hình bình hành.

Vậy hai tứ giác AEFD, AECF là những hình bình hành.

b) Vì tứ giác AEFD là hình bình hành nên EF = AD.

Vì tứ giác AECF là hình bình hành nên AF = EC.

Vậy EF = AD, AF = EC.

7 tháng 7 2023

câu a: áp dụng "Tứ giác có 1 cặp cạnh đối song song và bằng nhau là hình bình hành"

Câu b: Áp dụng t/c như câu a chứng minh các tứ giác chứa các đoạn thẳng cần c/m bằng nhau ;à hình bình hành từ đó áp dụng t/c "Trong hình bình hành các cặp cạnh đối bằng nhau"

7 tháng 7 2023

https://onlinemath.vn/cau-hoi/viet-1-doan-van-tong-phan-hop-khoang-12-cau-phan-tich-kho-tho-thu-2-bai-que-huong-trong-do-su-dung-1-cau-cam-than-vs-cau-ghep-chi-ro.8109170456376

7 tháng 7 2023

A B C D E F

a/

Ta có

AB = CD (cạnh đối hình bình hành)

AE = BE (gt); CF=DF (gt)

=> AE = BE = CF = DF

Xét tứ giác AEFD có

AB//CD (cạnh đối hình bình hành)

=> AE//DF mà AE = DF (cmt) => AEFD là hbh (tứ giác có cặp cạnh đối // và bằng nhau là hình bình hành)

Xét tứ giác AECF có

AB//CD (cạnh đối hbh)

=> AE//CF mà AE = CF => AECF là hình bình hành (lý do như trên)

b/

Do AEFD là hbh => EF=AD (cạnh đối hbh)

C/m tương tự như câu a ta cũng có BEDF là hbh => BF=DE (cạnh đối hbh)

C/m tương tự có AECF là hbh => AF=EC (cạnh đối hbh)

 

15 tháng 12 2023

a: Ta có: ABCD là hình bình hành

=>AB=CD(1)

Ta có: E là trung điểm của AB

=>\(EA=EB=\dfrac{AB}{2}\left(2\right)\)

Ta có: F là trung điểm của CD

=>\(FC=FD=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra EA=EB=FC=FD

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: Xét tứ giác AEFD có

AE//FD

AE=FD

Do đó: AEFDlà hình bình hành

Hình bình hành AEFD có \(AE=AD\left(=\dfrac{AB}{2}\right)\)

nên AEFD là hình thoi

c: Xét tứ giác EBCF có

BE//FC

BE=FC

Do đó: EBCF là hình bình hành

Hình bình hành EBCF có \(EB=BC\left(=\dfrac{AB}{2}\right)\)

nên EBCF là hình thoi

=>EC\(\perp\)BF tại trung điểm của mỗi đường

=>EC\(\perp\)BF tại K và K là trung điểm chung của EC và BF

Ta có: AEFD là hình thoi

=>AF\(\perp\)ED tại trung điểm của mỗi đường

=>AF\(\perp\)ED tại I và I là trung điểm chung của AF và ED

Ta có: AEFD là hình thoi

=>EF=AD

mà AD=DC/2

nên EF=DC/2

Xét ΔEDC có

EF là đường trung tuyến

\(EF=\dfrac{CD}{2}\)

Do đó: ΔEDC vuông tại E

Xét tứ giác EIFK có

\(\widehat{EIF}=\widehat{EKF}=\widehat{IEK}=90^0\)

=>EIFK là hình chữ nhật

d: Để EIFK là hình vuông thì FI=FK

mà \(FI=\dfrac{FA}{2};FK=\dfrac{FB}{2}\)

nên FA=FB

=>ΔFAB cân tại F

Ta có: ΔFAB cân tại F

mà FE là đường trung tuyến

nên FE\(\perp\)AB

ta có: FE\(\perp\)AB

FE//AD

Do đó: AD\(\perp\)AB

16 tháng 12 2020

a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)

\(CF=FD=\dfrac{CD}{2}\)(F là trung điểm của CD)

mà AB=CD(Hai cạnh đối của hình bình hành ABCD)

nên AE=CF=FD=EB

Xét tứ giác AECF có 

AE//CF(AB//CD, E∈AB, F∈CD)

AE=CF(cmt)

Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét tứ giác AEFD có 

AE//FD(AB//CD, E∈AB, F∈CD)

AE=FD(cmt)

Do đó: AEFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: AF//CE(Hai cạnh đối trong hình bình hành AECF)

mà H∈AF(gt)

và K∈CE(gt)

nên HF//KC và EK//AH

Xét ΔDKC có 

F là trung điểm của CD(gt)

FH//DK(cmt)

Do đó: H là trung điểm của DK(Định lí 1 về đường trung bình của tam giác)

⇒DH=KH(1)

Xét ΔABH có 

E là trung điểm của AB(gt)

EK//BH(cmt)

Do đó: K là trung điểm của BH(Định lí 1 về đường trung bình của tam giác)

⇒BK=KH(2)

Từ (1) và (2) suy ra DH=HK=KB(đpcm)