Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nhé
a) vì A=45o và AB=BD
=>ABD là tam giác vuông cân
=>AD2=AB2+BD2
=>AD2=182+182
=>AD2=648
=>AD=\(18\sqrt{2}\)
b) ABD là tam giác vuông cân ; AB //CD
=>ABD=BDC=90o
=>BD là đường cao của ABCD
Vậy diện tích vủa hình bình hành
AB.BD=18.18=324
a) Xét hình bình hành ABCD có I, K là trung điểm của AB và DC nên IK là đường trung bình. Vậy thì IK = BC = AD.
Xét tứ giác ADKI có 4 cạnh bằng nhau nên nó là hình thoi.
b) Chứng minh tương tự, ta có KCBI là hình thoi.
Vậy thì KA là phân giác góc \(\widehat{DKI}\) , KB là phân giác góc \(\widehat{IKC}\)
Vậy nên \(\widehat{AKB}=\widehat{AKI}+\widehat{IKB}=\frac{1}{2}\widehat{DKI}+\frac{1}{2}\widehat{IKC}=\frac{1}{2}.180^o=90^o\)
Vậy \(\widehat{AKB}=90^o\)
c) Do AB = DC = 2 BC = 2AD nên chu vi hình bình hành bằng 6 lần BC. Vậy BC = 30 : 6 = 5 (cm)
AB = 2 x 5 = 10 (cm)
Do IKCB là hình thoi nên BK là phân giác góc IBC. Vậy nên \(\widehat{IBK}=60^o\)
Suy ra IBK là tam giác đều hay KB = IK = BC = 5(cm)
Áp dụng định lý Pi-ta-go, ta có: \(AK=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
Vậy diện tích tam giác AKB bằng: \(\frac{1}{2}.5.5\sqrt{3}=\frac{25}{2}\sqrt{3}\left(cm^2\right)\)
Dễ thấy diện tích hình bình hành gấp đôi diện tích tam giác AKB nên \(S_{ABCD}=25\sqrt{3}\left(cm^2\right)\)
Kẻ \(BH\) ⊥ \(AD\) tại H
\(\Rightarrow\Delta ABH\) vuông cân tại H
\(\Rightarrow AH=HB\)
Áp dụng định lí py-ta-go vào tg ABH tính được : \(AH\approx12,73\)
Mặt khác : \(AB=AD\)
\(\Rightarrow\Delta ABD\) cân
\(\Rightarrow BH\) là đường trung tuyến
\(\Rightarrow AD=2AH=25,46\)
Ta có : \(S_{ABCD}=2S_{ABD}=2.\frac{1}{2}.AD.AB.sinA\approx324,053\)
sao cái đề cho AB mà tính AB.tui cũng ghi zậy sợ ghi đề sai mà thấy bà cũng ghi zậy.....SAO GIỜ?