K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

 

undefined

a) Ta có:\(AE=EB=\frac{1}{2}AB\)

\(\text{AF}=FC=\frac{1}{2}CD\)

mà AB=CD( 2 cạnh đối trong hìh bình hành

=> AE=EB=AF=FC

Ta có: Tứ giác AFCE có : AE=FC(cmt)

AE//FC

=> AFCE là hình bình hành

Tứ giác BEDF có : EB=FD(cmt)

EB//FD

=> BEDF là hình bình hành

b)Ta có: AECF là hình bình hành

=> AF//CE và AF=CE

BEDF là hình bình hành

=> BF//DE và BF=DE

19 tháng 10 2016

mk sẽ gải giúp bạn nhưng câu c bạn hỏi gì z

20 tháng 10 2016

bạn vẽ hình nhé mình chứng minh lun

20 tháng 10 2016

a) ta có: AB=DC ( vì ABCD là hình bình hành)

=> AE=FC (1)

lại có AB// CD( vì ABCD là hình bình hành) => AE// FC (2)

 Từ (1) và (2) suy ra AECF là hình bình hành (dhnb)

CM tương tự ta được EBFD là hình bình hành

b) ta có AF // CE và AF = CE  ( vì AFCE là hình bình hành )

lại có BF // DE và BF = DE ( vì BEDF là hình bình hành)

 

21 tháng 10 2016

AE = EB = AB/2 (E là trung điểm của AB)

CF = FD = CD/2 (F là trung điểm của CD)

mà AB = CD (ABCD là hbh)

=> AE = CF

mà AE // CF (AB // CD, E thuộc AB, F thuộc CD)

=> AECF là hbh.

18 tháng 9 2019

a.

Xet 2 tam giac ADE va CBF ta co:

\(\widehat{A}=\widehat{C}\)(2 goc doi cua hinh binh hanh)

\(AE=CF\)

\(AD=BC\)(2 canh doi cua hinh binh hanh)

Do do:\(\Delta ADE=\Delta CBF\left(c-g-c\right)\)

Suy ra:\(DE=BF\)(2 canh tuong ung)

b.Xet 2 tam giac ADF va CBE ta co:

\(\widehat{D}=\widehat{B}\)(2 goc doi cua hinh binh hanh)

\(DF=BE\)

\(AD=CB\)(2 canh doi cua hinh binh hanh)

Do do:\(\Delta ADF=\Delta CBE\left(c-g-c\right)\)

Suy ra:\(AF=CE\)(2 canh tuong ung)

Tu giac AECF co:

\(AE=CF\)

\(AF=CE\)

Nen AECF la hinh binh hanh 

Suy ra:\(\widehat{BAF}=\widehat{DCE}\)(2 goc doi cua hinh binh hanh)

Theo chung minh o cau a ta co:\(\Delta ADE=\Delta CBF\)

Suy ra:\(\widehat{AED}=\widehat{CFB}\)(2 goc tuong ung)

Xet 2 tam giac EAM va FCN ta co:

\(AE=CF\)

\(\widehat{BAF}=\widehat{DCE}\)

\(\widehat{AED}=\widehat{CFB}\)

Do do:\(\Delta EAM=\Delta FCN\left(g-c-g\right)\)

Suy ra:\(EM=FN\left(1\right)\)(2 canh tuong ung)

Va \(\widehat{AME}=\widehat{CNF}\)(2 goc tuong ung)

Ma \(\widehat{DMF}=\widehat{AME}\left(2\right)\)

\(\widehat{BNE}=\widehat{CNF}\left(3\right)\)

Tu (2) va (3) suy ra:\(\widehat{DMF}=\widehat{BNE}\)

Tu giac EBFD co:

\(BE=DF\)

\(DE=BF\)(chung minh o cau a)

Nen EBFD la hinh binh hanh

Suy ra;\(\widehat{EDF}=\widehat{FBE}\)(2 goc doi cua hinh binh hanh)

Xet 2 tam giac DMF va BNE ta co:

\(\widehat{DMF}=\widehat{BNE}\)

\(\widehat{EDF}=\widehat{FBE}\)

\(DF=BE\)

Do do:\(\Delta DMF=\Delta BNE\left(c-g-c\right)\)

Suy ra;\(MF=NE\left(4\right)\)(2 canh tuong ung)

Tu (1) va (4) suy ra:EMFN la hinh binh hanh

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

18 tháng 9 2016

làm đc mỗi câu b :))

AEFC là hình bình hành ( tự cm nhá :) )

=> đường chéo AC giao đường chéo EF tại trung điểm của EF

câu a => đường chéo MN giao đường chéo EF tại trung điểm của EF

=> ĐPCM

câu b thui, câu a lằng nhằng quá lười nghĩ thông cảm nhé

19 tháng 10 2016

gianroi