K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2019

a.

Xet 2 tam giac ADE va CBF ta co:

\(\widehat{A}=\widehat{C}\)(2 goc doi cua hinh binh hanh)

\(AE=CF\)

\(AD=BC\)(2 canh doi cua hinh binh hanh)

Do do:\(\Delta ADE=\Delta CBF\left(c-g-c\right)\)

Suy ra:\(DE=BF\)(2 canh tuong ung)

b.Xet 2 tam giac ADF va CBE ta co:

\(\widehat{D}=\widehat{B}\)(2 goc doi cua hinh binh hanh)

\(DF=BE\)

\(AD=CB\)(2 canh doi cua hinh binh hanh)

Do do:\(\Delta ADF=\Delta CBE\left(c-g-c\right)\)

Suy ra:\(AF=CE\)(2 canh tuong ung)

Tu giac AECF co:

\(AE=CF\)

\(AF=CE\)

Nen AECF la hinh binh hanh 

Suy ra:\(\widehat{BAF}=\widehat{DCE}\)(2 goc doi cua hinh binh hanh)

Theo chung minh o cau a ta co:\(\Delta ADE=\Delta CBF\)

Suy ra:\(\widehat{AED}=\widehat{CFB}\)(2 goc tuong ung)

Xet 2 tam giac EAM va FCN ta co:

\(AE=CF\)

\(\widehat{BAF}=\widehat{DCE}\)

\(\widehat{AED}=\widehat{CFB}\)

Do do:\(\Delta EAM=\Delta FCN\left(g-c-g\right)\)

Suy ra:\(EM=FN\left(1\right)\)(2 canh tuong ung)

Va \(\widehat{AME}=\widehat{CNF}\)(2 goc tuong ung)

Ma \(\widehat{DMF}=\widehat{AME}\left(2\right)\)

\(\widehat{BNE}=\widehat{CNF}\left(3\right)\)

Tu (2) va (3) suy ra:\(\widehat{DMF}=\widehat{BNE}\)

Tu giac EBFD co:

\(BE=DF\)

\(DE=BF\)(chung minh o cau a)

Nen EBFD la hinh binh hanh

Suy ra;\(\widehat{EDF}=\widehat{FBE}\)(2 goc doi cua hinh binh hanh)

Xet 2 tam giac DMF va BNE ta co:

\(\widehat{DMF}=\widehat{BNE}\)

\(\widehat{EDF}=\widehat{FBE}\)

\(DF=BE\)

Do do:\(\Delta DMF=\Delta BNE\left(c-g-c\right)\)

Suy ra;\(MF=NE\left(4\right)\)(2 canh tuong ung)

Tu (1) va (4) suy ra:EMFN la hinh binh hanh

7 tháng 10 2016

a, Ta có: ABCD la hình bình hành

=> AB=CD; AB//CD

Mà E là trung điểm của AB; F là trung điểm của CD.

=>AE= EB= CF= DF (1)

VÌ AB// CD=>EB// DF (2)

Từ(1) và (2) => EBFD là hình bình hành (theo dấu hiệu nhận biết hình bình hành)(đpcm)

b, Xét hbh ABCD ta có:

AC cắt BD tại trung điểm của AC và BD (1)

Xét hình bình hành EBFD có EF cắt BD tại trung điểm của EF và BD (2)

Từ (1) và (2) =>  Ba đường thẳng AC, BD, EF đồng quy

23 tháng 9 2017

cm ơn

18 tháng 9 2016

làm đc mỗi câu b :))

AEFC là hình bình hành ( tự cm nhá :) )

=> đường chéo AC giao đường chéo EF tại trung điểm của EF

câu a => đường chéo MN giao đường chéo EF tại trung điểm của EF

=> ĐPCM

câu b thui, câu a lằng nhằng quá lười nghĩ thông cảm nhé

19 tháng 10 2016

gianroi