K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2019

Xét /\\(\) AMI:MA<MI+IA

Cộng MB vào hai vế :

MA+MB<MI+IA+MB

=>MA+MB<IB+IA (1)

Xét /\ BIC:IB<IC+CB

Cộng IA vào hai vế:

IB+IA<IC+CB+IA

=>IB+IA<CA+CB (2)

Từ (1),(2) ta có MA+MB<IA+IB<CA + CB

28 tháng 6 2020

Cho hình bên ??? Where's hình?

A A A B B B C C C I I I M M M

 Trong \(\Delta AMI\),ta có :

MA < IA + IM <=> MA + MB < IA + IM + MB

                      <=> MA + MB < IA + IB(1)

Trong \(\Delta BCI\),ta có : IB < CI + CB <=> IA + IB < IA + CI + CB

                                                           <=> IA + IB < CA + CB      (2)

Từ (1) và (2) => MA + MB < IA + IB < CA + CB

12 tháng 3 2018

Hình chiếu của AN < hình chiếu của AC

=> đường xiên BN < đường xiên của BC (1)

Hình chiếu của AM < hình chiếu AB => đường xiên MN < đường xiên NB. (2)

Từ (1) và (2) suy ra:

MN< BN< BC.

12 tháng 3 2018

Ta có AN+NC=AC

\(\Rightarrow\)AN < AC mà AN là hình chiếu của đường xiên MN,AC là hình chiếu của đường xiên BC

\(\Rightarrow\)MN<BC (đpcm)

mik lm hơi vắn tắt 1 xíuleuleu

19 tháng 4 2017

a) Trong hình vẽ BE < BC là hai đường xiên vẽ từ B đến đường AC và AE, AC là hai hình chiếu của chúng vì AE < AC nên BE < BC

b) EB và ED là hai đường xiên vẽ từ E đến AB

AB và AD là hai hình chiếu của chúng

Vì AD < AB nên DE < BE

Ta có: BE < BC và DE < BE nên DE < BC

Xét ΔADB vuông tại D có BD<AB

Xét ΔAEC vuông tại E có CE<AC

Do đó: BD+CE<AB+AC

8 tháng 2 2017

(Bạn tự vẽ hình nhé)

a) Xét \(\Delta IAM\) có:

\(IA+MI>MA\) (Bất đẳng thức \(\Delta\))

\(\Rightarrow IA+MI+MB>MA+MB\)

Mà \(MI+MB=IB\left(M\in BI\right)\)

\(\Rightarrow IA+IB>MA+MB\) (Đpcm) (1)

b) Xét \(\Delta CIB\) có:

\(IC+CB>IB\) (Bất đẳng thức \(\Delta\))

\(\Rightarrow IC+CB+IA>IB+IA\)

Mà \(IC+IA=CA\left(I\in AC\right)\)

\(\Rightarrow CA+CB>IA+IB\) (Đpcm) (2)

c) Từ (1),(2) \(\Rightarrow MA+MB< IA+IB< CA+CB\)

\(\Rightarrow MA+MB< CA+CB\left(đpcm\right)\)

a: MC+CB=MB

mà CB=CA

nên MC+CA=MB

mà MC+CA<MA

nên MA>MB

b: Gọi D là giao điểm của NA với d

C là giao điểm của CB với d

Ta có:NA=ND+DA

mà DA=DB

nen NA=ND+DB(3)

mà NB<ND+DB

nên NA>NB

13 tháng 5 2017

Xét tam giác IAC và IBD có:

IA = IB ( theo đề bài)

Góc AIC = góc BID ( 2 góc đối đỉnh)

IC = ID ( theo đề bài )

Do đó: tam giác IAC = tam giác IBD (c.g.c)

Suy ra góc ACI = góc BDI ( 2 góc tương ứng) \(\left(1\right)\)

Suy ra góc IAC = IBD ( 2góc tương ứng) (*)

Có I nằm giữa B và C

Suy ra: BI + CI = BC (2)

Có I nằm giữa A và D

Suy ra: AI + DI = AD (3)

Từ 2 và 3 suy ra: BC = AD (4)

Có góc OAI + góc IAC = \(180^0\)(2 góc kề bù)

góc OBI + góc IBD = \(180^0\)(2 góc kề bù)

mà: góc IAC = góc IBD (*)

Suy ra góc: OAI = góc OBI (5)

Xét tam giác: OAD và tam giác OBC có:

góc ACI = góc BDI (1)

AD = BC (4)

góc OAI = góc OBI (5)

Do đó: tam giác OAD = tam giác OBC (g.c.g)

Suy ra: OA = OB (2 cạnh tương ứng)

Xét tam giác IAC và tam giác IBD có:

IA = IB ( gt)

Góc AIC = góc BID ( 2 góc đối đỉnh)

IC = ID ( gt )

=> Tam giác IAC = tam giác IBD (c.g.c)

=> Góc ACI = góc BDI ( 2 góc tương ứng) (1)

và góc IAC = IBD ( 2góc tương ứng) (*)

Có I nằm giữa B và C

Suy ra: BI + CI = BC (2)

Có I nằm giữa A và D

Suy ra: AI + DI = AD (3)

Từ 2 và 3 suy ra: BC = AD (4)

Có góc OAI + góc IAC = 1800 (2 góc kề bù)

góc OBI + góc IBD = 1800 (2 góc kề bù)

mà: góc IAC = góc IBD (*)

=> góc: OAI = góc OBI (5)

Xét tam giác OAD và tam giác OBC có:

góc ACI = góc BDI (1)

AD = BC (4)

góc OAI = góc OBI (5)

=> Tam giác OAD = tam giác OBC (g.c.g)

=> OA = OB (2 cạnh tương ứng)

12 tháng 5 2017

vì AC=AD=>A thuộc đường trung trực của CD

CB=BD=>B thuộc đường trung trực của CD

=>AB thuộc đường trung trực của CD=>AB vuông góc với CD