Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình bên ??? Where's hình?
A A A B B B C C C I I I M M M
Trong \(\Delta AMI\),ta có :
MA < IA + IM <=> MA + MB < IA + IM + MB
<=> MA + MB < IA + IB(1)
Trong \(\Delta BCI\),ta có : IB < CI + CB <=> IA + IB < IA + CI + CB
<=> IA + IB < CA + CB (2)
Từ (1) và (2) => MA + MB < IA + IB < CA + CB
Hình chiếu của AN < hình chiếu của AC
=> đường xiên BN < đường xiên của BC (1)
Hình chiếu của AM < hình chiếu AB => đường xiên MN < đường xiên NB. (2)
Từ (1) và (2) suy ra:
MN< BN< BC.
a) Trong hình vẽ BE < BC là hai đường xiên vẽ từ B đến đường AC và AE, AC là hai hình chiếu của chúng vì AE < AC nên BE < BC
b) EB và ED là hai đường xiên vẽ từ E đến AB
AB và AD là hai hình chiếu của chúng
Vì AD < AB nên DE < BE
Ta có: BE < BC và DE < BE nên DE < BC
Xét ΔADB vuông tại D có BD<AB
Xét ΔAEC vuông tại E có CE<AC
Do đó: BD+CE<AB+AC
(Bạn tự vẽ hình nhé)
a) Xét \(\Delta IAM\) có:
\(IA+MI>MA\) (Bất đẳng thức \(\Delta\))
\(\Rightarrow IA+MI+MB>MA+MB\)
Mà \(MI+MB=IB\left(M\in BI\right)\)
\(\Rightarrow IA+IB>MA+MB\) (Đpcm) (1)
b) Xét \(\Delta CIB\) có:
\(IC+CB>IB\) (Bất đẳng thức \(\Delta\))
\(\Rightarrow IC+CB+IA>IB+IA\)
Mà \(IC+IA=CA\left(I\in AC\right)\)
\(\Rightarrow CA+CB>IA+IB\) (Đpcm) (2)
c) Từ (1),(2) \(\Rightarrow MA+MB< IA+IB< CA+CB\)
\(\Rightarrow MA+MB< CA+CB\left(đpcm\right)\)
a: MC+CB=MB
mà CB=CA
nên MC+CA=MB
mà MC+CA<MA
nên MA>MB
b: Gọi D là giao điểm của NA với d
C là giao điểm của CB với d
Ta có:NA=ND+DA
mà DA=DB
nen NA=ND+DB(3)
mà NB<ND+DB
nên NA>NB
Xét tam giác IAC và IBD có:
IA = IB ( theo đề bài)
Góc AIC = góc BID ( 2 góc đối đỉnh)
IC = ID ( theo đề bài )
Do đó: tam giác IAC = tam giác IBD (c.g.c)
Suy ra góc ACI = góc BDI ( 2 góc tương ứng) \(\left(1\right)\)
Suy ra góc IAC = IBD ( 2góc tương ứng) (*)
Có I nằm giữa B và C
Suy ra: BI + CI = BC (2)
Có I nằm giữa A và D
Suy ra: AI + DI = AD (3)
Từ 2 và 3 suy ra: BC = AD (4)
Có góc OAI + góc IAC = \(180^0\)(2 góc kề bù)
góc OBI + góc IBD = \(180^0\)(2 góc kề bù)
mà: góc IAC = góc IBD (*)
Suy ra góc: OAI = góc OBI (5)
Xét tam giác: OAD và tam giác OBC có:
góc ACI = góc BDI (1)
AD = BC (4)
góc OAI = góc OBI (5)
Do đó: tam giác OAD = tam giác OBC (g.c.g)
Suy ra: OA = OB (2 cạnh tương ứng)
Xét tam giác IAC và tam giác IBD có:
IA = IB ( gt)
Góc AIC = góc BID ( 2 góc đối đỉnh)
IC = ID ( gt )
=> Tam giác IAC = tam giác IBD (c.g.c)
=> Góc ACI = góc BDI ( 2 góc tương ứng) (1)
và góc IAC = IBD ( 2góc tương ứng) (*)
Có I nằm giữa B và C
Suy ra: BI + CI = BC (2)
Có I nằm giữa A và D
Suy ra: AI + DI = AD (3)
Từ 2 và 3 suy ra: BC = AD (4)
Có góc OAI + góc IAC = 1800 (2 góc kề bù)
góc OBI + góc IBD = 1800 (2 góc kề bù)
mà: góc IAC = góc IBD (*)
=> góc: OAI = góc OBI (5)
Xét tam giác OAD và tam giác OBC có:
góc ACI = góc BDI (1)
AD = BC (4)
góc OAI = góc OBI (5)
=> Tam giác OAD = tam giác OBC (g.c.g)
=> OA = OB (2 cạnh tương ứng)
vì AC=AD=>A thuộc đường trung trực của CD
CB=BD=>B thuộc đường trung trực của CD
=>AB thuộc đường trung trực của CD=>AB vuông góc với CD
Xét /\\(\) AMI:MA<MI+IA
Cộng MB vào hai vế :
MA+MB<MI+IA+MB
=>MA+MB<IB+IA (1)
Xét /\ BIC:IB<IC+CB
Cộng IA vào hai vế:
IB+IA<IC+CB+IA
=>IB+IA<CA+CB (2)
Từ (1),(2) ta có MA+MB<IA+IB<CA + CB