Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bn có thể áp dụng hệ thức trong tam giác vuông hoặc bn sd tam giác đồng dạng :
Cách 1 :Xét \(\Delta ABC\) và \(\Delta HCA\) có :
\(\widehat{BAC}=\widehat{CHA}=90^o;\widehat{ABC}=\widehat{HCA}\)
=> \(\Delta ABC\) ~ \(\Delta HCA\)
=> \(\frac{AC}{HC}=\frac{BC}{CA}\Rightarrow AC^2=HC.BC\)
Cách 2 : Xét \(\Delta ABC\) vuông tại A có đường cao AH
\(\Rightarrow AC^2=HC.BC\)
b) Xét \(\Delta ABC\) vuông tại A
=> \(BC^2=AB^2+AC^2=6^2+8^2=100\)
=> \(BC=10\) cm
Xét \(\Delta ABC\) vuông tại A có đường cao AH
=> AB . AC = AH . BC
=> AH = 4,8 cm
c) Xet \(\Delta ABC\) vuông tại A có đường cao AH
=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
A D B C H
a) Xét tam giác ABD vuông tại A theo định lý pitago ta có
BD2=AB2+AD2
Thay AB= 6cm AD=BC=8cm ta được
BD2=62+86
BD=10 cm
Vậy BD=10cm
b) Xét tam giác ADH và tam giác BDA có
AHD =BAD=90 độ
D chung
do đó tg ADH ~ tg BDA
c) tg ADH ~ tg BDA (gg)
=> AD/BD = DH/DA hay AD2=DH.BD
d) Ta có AB//DC (ABCD là hcn)
=>góc ABD=góc CDB hay góc ABH = góc CDB
Xét tam giác AHB và Tam giác BCD có
C= BHA =90 độ
góc ABH = góc CDB(cmt)
do đó tg ABH ~ tg CDB (gg)
Cho tam giác ABC , các đường cao BD,CE cắt nhau tại H . Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở K . Gọi M là trung điểm của BC
a) Chứng minh tam giác ADB~tam giác AEC
b) Chứng minh HE.HC=HD.HB
c) Chứng minh H,K,M thẳng hàng
Tam giác ABC phải co điều kiện gì thì tứ giác BHCK là hình thoi ? Hình chữ nhật ?
a) vì ABCD là hình chữ nhật
nên AB // DC => góc ABH= góc BDC ( 2 góc so le trong )
Xét 2 tam giác AHB và BCD có
góc ABH = góc BDC
góc AHB = góc BCD =900
=> 2 tam giác AHB và BCD đồng dạng (g.g)
b) Xét 2 tam giác ADH và BDA có
góc ADH chung
góc AHD = góc BAD =900
nên 2 tam giác ADH và BDA là 2 tam giác đồng dạng (g.g)
=> \(\frac{AD}{BD}=\frac{DH}{AD}\)
=> AD2=BD.DH
tam giác ABD vuông tại A
=> \(BD^2=AD^2+AB^2\)( Py-ta-go)
=>BD =10cm
mà AD2=DH.BD (cmt)
=> 62=DH.10
=> DH =3.6cm
tam giác ADH vuông tại H nên AD2=AH2+DH2 ( py-ta-go)
<=> 62-3.62=AH2
AH=\(\sqrt{6^2-3.6^2}\)=4.8cm
a) ADĐL pitago vào tam giác vuông DCB , có :
BC2 + DC2 = DB2
=> 62 + 82 = BD2
=> BD2 = 100
=> BD = 10 cm
b)
Xét tam giác ADB và tam giác AHD , có :
A^ = H^ = 90O
D^ ; góc chung
=> tam giác AHD ~ tam giác BAD (g.g)
c)
Vì tam giác AHD ~ tam giác BAD ( câu b )
=> \(\dfrac{AD}{HD}\)= \(\dfrac{BD}{AD}\)
=> AD2 = HD . BD
d)
a) ΔABD vuông tại A (ABCD là hình chữ nhật)
⇒DB2=AB2+AD2(Đinh lí pitago)
DB2=82+62
⇔DB=\(\sqrt{100}\)=10(cm)
Hình:
A B C D H 8 6 1 1
~~~~
a/ Xét \(\Delta AHB\) và \(\Delta DAB\) có:
\(\widehat{BHA}=\widehat{DAB}\left(=90^o\right)\)
\(\widehat{B_1}:chung\)
=> \(\Delta AHB\) ~ \(\Delta DAB\left(g.g\right)\)(1)
Cmtt có: \(\Delta DAB\sim\Delta BCD\left(g.g\right)\)(2)
Từ (1), (2) => \(\Delta AHB\sim\Delta BCD\)(t/c bắc cầu)
b/ Cmtt như ý a ta có: \(\Delta ADH\sim\Delta BDA\left(g.g\right)\)
=> \(\dfrac{AD}{BD}=\dfrac{DH}{AD}\)=> AD2 = DH . DB (đpcm)
c/ +) Áp dụng pytago vào tam giác ABD vuông tại A có:
\(DB^2=AB^2+AD^2=8^2+6^2=100\) => DB = 10cm
Có: \(AD^2=DH\cdot DB\) (ý b)
hay \(6^2=DH\cdot10\Rightarrow DH=\dfrac{36}{10}=3,6\)cm
+) Áp dụng pytago vào \(\Delta ADH\left(\widehat{DHA}=90^o\right)\) có:
\(AD^2=DH^2+AH^2\Rightarrow AH=\sqrt{AD^2-DH^2}\)
\(=\sqrt{6^2-3,6^2}=4,8cm\)
Vậy......
a) Vì ABCD là HCN (gt) => \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\) (= 90 độ) và AB // CD
=> \(\widehat{ABD}=\widehat{BDC}\)
xét tam giác AHB và tam giác BCD có:
\(\widehat{ABD}=\widehat{BDC}\) (cmt)
\(\widehat{AHB}=\widehat{BCD}\) (= 90 độ)
=> tam giác AHB \(\sim\) tam giác BCD(gg)
b) xét tam giác AHD và tam giác BAD có:
\(\widehat{AHD}=\widehat{BAD}\) (= 90 độ)
\(\widehat{ADB}\) chung
=> tam giác AHD \(\sim\) tam giác BAD(gg)
=> \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\) (các cạnh t/ứ tỉ lệ)
=> AD . AD = BD . HD => \(AD^2\) = BD . HD
c) Vì ABCD là HCN(gt) => AD = BC
Mà BC = 6 cm => AD = 6 cm
xét tam giác AED vuông tại A
Theo đ/lí Pytago:
\(BD^2\) = \(AD^2+AB^2\)
=> \(BD^2\)= 36 + 64
=> \(BD^2\)= 100
=> BD = 10 cm
VÌ \(AD^2\) = DH . DB (câu b) => DH = \(\dfrac{AD^2}{DB}\)
=> DH = \(\dfrac{36}{10}\)= 3,6 cm
vì tam giác AHB \(\sim\) tam giác BCD (câu a)
=> \(\dfrac{AH}{BC}=\dfrac{AB}{BD}\) (các canh t/ứ tỉ lệ)
=> AH = \(\dfrac{BC.AB}{BD}\)= \(\dfrac{6.8}{10}\)= 4,8 cm
a) Xét ΔAHB và ΔBCD có
\(\widehat{AHB}=\widehat{BCD}\left(=90^0\right)\)
\(\widehat{ABH}=\widehat{BDC}\)(so le trong, AB//DC)
Do đó: ΔAHB\(\sim\)ΔBCD(g-g)
b) Xét ΔAHD và ΔBAD có
\(\widehat{AHD}=\widehat{BAD}\left(=90^0\right)\)
\(\widehat{ADB}\) chung
Do đó: ΔAHD\(\sim\)ΔBAD(g-g)
⇒\(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}=k\)(tỉ số đồng dạng)
hay \(AD^2=HD\cdot BD\)
⇒\(AD^2=DH\cdot DB\)(đpcm)
c) Ta có: BC=AD(hai cạnh đối trong hình chữ nhật ABCD)
mà BC=6cm
nên AD=6cm
Áp dụng định lí pytago vào ΔADB vuông tại A, ta được:
\(BD^2=AD^2+AB^2\)
hay \(BD^2=6^2+8^2=100\)
⇒\(BD=\sqrt{100}=10cm\)
Ta có: \(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}\)(cmt)
nên \(\frac{6}{10}=\frac{HD}{6}\)
⇒\(HD=\frac{6\cdot6}{10}=\frac{36}{10}=3,6cm\)
Ta có: \(\frac{AD}{BD}=\frac{HD}{AD}=\frac{AH}{BA}\)(cmt)
nên \(\frac{3,6}{6}=\frac{AH}{8}\)
⇒\(AH=\frac{3,6\cdot8}{6}=\frac{28,8}{6}=4,8cm\)
Vậy: HD=3,6cm và AH=4,8cm
d) Ta có: \(\frac{1}{AH^2}=\frac{1}{\left(4,8\right)^2}=\frac{1}{23,04}=\frac{25}{576}\)(1)
Ta có: \(\frac{1}{AB^2}+\frac{1}{AD^2}=\frac{1}{8^2}+\frac{1}{6^2}=\frac{1}{64}+\frac{1}{36}\)
\(=\frac{9}{576}+\frac{16}{576}=\frac{25}{576}\)(2)
Từ (1) và (2) suy ra \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\)(đpcm)
Ko sao cả. Bạn làm giúp mik là ok rồi!