Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow-1^+}\dfrac{-2x+1}{x+1}=+\infty\Rightarrow x=-1\) là TCĐ
\(\lim\limits_{x\rightarrow+\infty}\dfrac{-2x+1}{x+1}=-2\Rightarrow y=-2\) là TCN
\(P=\left(-1\right)^2-2.\left(-2\right)=5\)
Đáp án A
* Định nghĩa tiệm cận ngang của đồ thị hàm số y = f(x)
* Định nghĩa tiệm cận đứng của đồ thị hàm số y = f(x)
là TCĐ của đồ thị hàm số.
\(\lim\limits_{x\rightarrow+\infty}\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}=\lim\limits_{x\rightarrow+\infty}\dfrac{2019}{\sqrt{17-\dfrac{1}{x^2}}-m}=\dfrac{2019}{\sqrt{17}-m}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}=\dfrac{2019}{m-\sqrt{17}}\)
Với \(m\ne\sqrt{17}\Rightarrow\) đồ thị hàm số luôn có 2 tiệm cận ngang
Với \(m=\sqrt{17}\) đồ thị hàm số ko có tiệm cận ngang
Xét phương trình: \(\sqrt{17x^2-1}=m\left|x\right|\)
- Với \(m< 0\Rightarrow\) pt vô nghiệm \(\Rightarrow\) ko có tiệm cận đứng \(\Rightarrow\) ĐTHS có tối đa 2 tiệm cận (ktm)
- Với \(m\ge0\)
\(\Leftrightarrow17x^2-1=m^2x^2\Leftrightarrow\left(17-m^2\right)x^2=1\)
+ Nếu \(\left[{}\begin{matrix}m\ge\sqrt{17}\\m\le-\sqrt{17}\end{matrix}\right.\) pt vô nghiệm \(\Rightarrow\) ĐTHS có tối đa 2 tiệm cận (ktm)
+ Nếu \(-\sqrt{17}< m< \sqrt{17}\) pt có 2 nghiệm \(\Rightarrow\) ĐTHS có 2 tiệm cận đứng
Vậy \(m=\left\{0;1;2;3;4\right\}\) có 5 phần tử
Chọn C.
Với đồ thị hàm số y = a x + 1 b x - 2 nhận đường thẳng x = 2 b làm tiệm cận đứng
Theo đề bài: x = 2 là tiệm cận đứng của đồ thị nên
Với b ≠ 0 đồ thị hàm số y = a x + 1 b x - 2 nhận đường thẳng y = a b làm tiệm cận ngang.
Theo đề bài: y = 3 là tiệm cận ngang của đò thị hàm số nên
Vậy a + b = 4.
Suy ra đồ thị hàm số có 1 đường TCN y = 0.
Do đó đồ thị hàm số có đúng 2 đường tiệm cận đồ thị hàm số có đứng 1 đường tiệm cận đứng phương trình m x 2 - 2 x + 4 = 0 có nghiệm kép hoặc có 2 nghiệm phân biệt trong đó có 1 nghiệm x = 2.
Vậy có 1 giá trị của m thỏa mãn yêu cầu bài toán.
Chọn A
Do \(2x-1=0\) có 1 nghiệm \(x=\dfrac{1}{2}\) nên \(x=\dfrac{1}{2}\) là TCĐ khi và chỉ khi \(mx^2-1=0\) có nghiệm kép \(x=\dfrac{1}{2}\)
\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu bài toán
Chọn B.
Ta có
suy ra đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số.
Do
nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.
\(\lim\limits_{x\rightarrow-1^+}\dfrac{2x-1}{x+1}=-\infty\Rightarrow x=-1\) là tiệm cận đứng
\(\lim\limits_{x\rightarrow+\infty}\dfrac{2x-1}{x+1}=2\Rightarrow y=2\) là tiệm cận ngang
\(\Rightarrow P=3.\left(-1\right)^2-2=1\)