Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình có hai nghiệm phân biệt
<=> \(\Delta'=\left(m+1\right)^2-\left(m+1\right)=\left(m+1\right)\left(m+1-1\right)=m\left(m+1\right)>0\)
<=> \(\orbr{\begin{cases}m>0\\m< -1\end{cases}}\)(@@)
Theo định lí vi et ta có: \(x_1x_2=m+1;x_2+x_2=-2\left(m+1\right)\)
Theo bài ra: \(\left(x_1-1\right)\left(x_2-1\right)< 0\)
<=> \(x_1x_2-\left(x_1+x_2\right)+1< 0\)
<=> 3 ( m + 1 ) + 1 < 0
<=> m < -4/3 thỏa mãn @@
Vậy...
Bài 3:
a: Để pt có hai nghiệm trái dấu thì m+5<0
=>m<-5
b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)
\(=m^2+4m+4-4m-20=m^2-16\)
Để phương trình có hai nghiệm phân biệt thì m^2-16>0
=>m>4 hoặc m<-4
c: x1^2+x2^2=23
=>(x1+x2)^2-2x1x2=23
=>(m+2)^2-2(m+5)=23
=>m^2+4m+4-2m-10-23=0
=>m^2+2m-29=0
hay \(m=-1\pm\sqrt{30}\)
d: Để pt có hai nghiệm âm phân biệt thì
\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\Rightarrow m^2-3< 0\Rightarrow-\sqrt{3}< m< \sqrt{3}\)
\(\Delta=m^2-4\left(m^2-3\right)=12-3m^2\ge0\Rightarrow m^2\le4\)
Khi đó theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m^2-3\end{matrix}\right.\)
\(\Rightarrow A=\left|x_1^2+x_2^2-x_1x_2\right|=\left|\left(x_1+x_2\right)^2-3x_1x_2\right|\)
\(A=\left|m^2-3\left(m^2-3\right)\right|=\left|9-2m^2\right|=9-2m^2\le9\)
\(\Rightarrow A_{max}=9\) khi \(m=0\)
Bài 2:
a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)
\(=16m^2+16m+4-16m-12=16m^2-8\)
Để phương trình có hai nghiệm thì \(2m^2>=1\)
=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)
\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)
\(=64m^3+96m^2+48m+8-48m^2-60m-18\)
\(=64m^3+48m^2-12m-10\)
a: Để bất phương trình có vô số nghiệm thì \(\left\{{}\begin{matrix}\left(2m-2\right)^2-4m< =0\\1>0\end{matrix}\right.\Leftrightarrow4m^2-8m+4-4m< =0\)
=>\(m^2-3m+1< =0\)
=>\(\dfrac{3-\sqrt{5}}{2}< =m< =\dfrac{3+\sqrt{5}}{2}\)
b: Để f(x)=0 có hai nghiệm thì \(m^2-3m+1>=0\)
=>\(\left[{}\begin{matrix}m>=\dfrac{3+\sqrt{5}}{2}\\m< =\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)
Theo đề, ta có: x1>1; x2>1
=>x1+x2>2
=>2(m-1)>2
=>m>2