K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2024

a: loading...

b: Phương trình hoành độ giao điểm là:

\(2x^2=2mx+1\)

=>\(2x^2-2mx-1=0\)

a=2; b=-2m; c=-1

Vì \(a\cdot c=2\cdot\left(-1\right)=-2< 0\)

nên (P) luôn cắt (d) tại hai điểm phân biệt

Theo vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-2m\right)}{2}=m\\x_1x_2=\dfrac{c}{a}=-\dfrac{1}{2}\end{matrix}\right.\)

\(\left|x_2\right|-\left|x_1\right|=2025\)

=>\(\left(\left|x_2\right|-\left|x_1\right|\right)^2=2025^2\)

=>\(x_2^2+x_1^2-2\left|x_1x_2\right|=2025^2\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=2025^2\)

=>\(m^2-2\cdot\dfrac{-1}{2}-2\cdot\left|-\dfrac{1}{2}\right|=2025^2\)

=>\(m^2=2025^2\)

=>\(\left[{}\begin{matrix}m=2025\\m=-2025\end{matrix}\right.\)

1 tháng 7 2021

m = 1

27 tháng 4 2023

- Phương trình hoành độ giao điểm của (P) và (d'):

\(-x^2=mx-4\Leftrightarrow x^2+mx-4=0\left(1\right)\)

\(a=1;b=m;c=-4\)

\(\Delta=b^2-4ac=m^2-4.\left(1\right).\left(-4\right)=m^2+16>0\)

Vì \(\Delta>0\) nên (P) và (d) luôn cắt nhau tại hai điểm phân biệt có hoành độ x1, x2.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{m}{1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{-4}{1}=-4\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2-\left(x_1+x_2\right)=18\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=18\)

\(\Rightarrow\left(-m\right)^2-2.\left(-4\right)-\left(-m\right)-18=0\)

\(\Leftrightarrow m^2+m-12=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)

Vậy m=4 hay m=-3.

23 tháng 5 2022

undefined

23 tháng 5 2022

PTHĐGĐ là:

x^2-(2m+1)x+m^2+m-6=0

Δ=(2m+1)^2-4(m^2+m-6)

=4m^2+4m+1-4m^2-4m+24

=25>0

=>Phương trình luôn có hai nghiệm phân biệt

\(\left|x_1^2-x_2^2\right|=50\)

\(\Leftrightarrow\left|\left(2m+1\right)\right|\cdot\sqrt{\left(2m+1\right)^2-4\left(m^2+m-6\right)}=50\)

\(\Leftrightarrow\left|2m+1\right|\cdot5=50\)

=>|2m+1|=10

=>m=9/2 hoặc m=-11/2

NV
23 tháng 1 2021

Pt hoành độ giao điểm: \(x^2-2\left(m-2\right)x-5=0\)

\(\Delta'=\left(m-2\right)^2+5>0;\forall m\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1x_2=-5\end{matrix}\right.\)

Do \(\left\{{}\begin{matrix}x_1x_2< 0\\x_1< x_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)

\(\left|x_1\right|+\left|x_2+2\right|=10\)

\(\Leftrightarrow-x_1+x_2+2=10\Leftrightarrow x_2-x_1=8\)

 \(\Leftrightarrow\left(x_2-x_1\right)^2=64\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=64\)

\(\Leftrightarrow4\left(m-2\right)^2+20=64\)

\(\Leftrightarrow\left(m-2\right)^2=11\Rightarrow\left[{}\begin{matrix}m=2+\sqrt{11}\\m=2-\sqrt{11}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
27 tháng 4 2023

Lời giải:

PT hoành độ giao điểm:

$x^2-(2x+2m-1)=0$

$\Leftrightarrow x^2-2x+(1-2m)=0(*)$

Để $(P)$ và $(d)$ cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì pt $(*)$ có 2 nghiệm pb $x_1,x_2$

Điều này xảy ra khi $\Delta'=1-(1-2m)=2m>0\Leftrightarrow m>0$

Theo định lý Viet:

$x_1+x_2=2$

$x_1x_2=1-2m$

Khi đó:

$x_2^2(x_1^2-1)+x_1^2(x_2^2-1)=8$

$\Leftrightarrow 2(x_1x_2)^2-(x_1^2+x_2^2)=8$

$\Leftrightarrow 2(x_1x_2)^2-[(x_1+x_2)^2-2x_1x_2]=8$

$\Leftrightarrow 2(1-2m)^2-[2^2-2(1-2m)]=8$

$\Leftrightarrow 8m^2-12m=8$

$\Leftrightarrow 2m^2-3m-2=0$

$\Leftrightarrow (m-2)(2m+1)=0$

$\Leftrightarrow m=2$ hoặc $m=\frac{-1}{2}$

Vì $m>0$ nên $m=2$

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(a=1;b=-3;c=-m^2+1\)

\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)

\(=9+4m^2-4=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

16 tháng 5 2022

Nguyễn Lê Phước Thịnh                                                         , mk cần bạn làm cái tìm m cơ!!!

29 tháng 1 2021

Phương trình hoành độ giao điểm:

\(x^2-\left(2m+1\right)x+m^2+m-6=0\left(1\right)\)

Ta có:

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25>0\forall m\)

\(\Rightarrow\) Phương trình (1) luôn có hai nghiệm phân biệt.

Theo định lí Vi-et \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-6\end{matrix}\right.\)

\(\Rightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)

\(\Rightarrow\left|x_1-x_2\right|=5\)

Lại có:

\(x_1^2+x_2^2+x_1x_2=\left(x_1+x_2\right)^2-x_1x_2=\left(2m+1\right)^2-\left(m^2+m-6\right)=3m^2+3m+7\)

Khi đó \(\left|x_1^3-x_2^3\right|=50\)

\(\Leftrightarrow\left|x_1-x_2\right|\left(x_1^2+x_2^2+x_1x_2\right)=50\)

\(\Leftrightarrow5\left(3m^2+3m+7\right)=50\)

\(\Leftrightarrow m^2+m-1=0\)

\(\Leftrightarrow m=\dfrac{-1\pm\sqrt{5}}{2}\)

30 tháng 1 2021

Cảm ơn Hồng Phúc CTV 

yeuyeuyeu