Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Để 2 đường thẳng trên cắt nhau tại 1 điểm trên trục tung khi chúng có cùng tung độ gốc hay .
\(5-m=3+m\)
=> \(2m=2\)
=> \(m=1\)
Vậy để 2 đường thẳng trên cắt nhau tại 1 điểm trên trục tung thì m = 1 .
Lời giải:
Phương trình hoành độ giao điểm:
\(12x+5-m=3x+3+m\)
\(\Leftrightarrow 9x=2m-2\Leftrightarrow x=\frac{2m-2}{9}\)
Khi đó: \(y=3x+3+m=3.\frac{2m-2}{9}+3+m=\frac{5m+7}{3}\)
Vậy giao điểm của \((d_1); (d_2)\) là \(\left(\frac{2m-2}{9}; \frac{5m+7}{3}\right)\)
a)
Giao điểm nằm trên trục tung nghĩa là hoành độ bằng $0$
\(\Leftrightarrow \frac{2m-2}{9}=0\Rightarrow m=1\)
b)
Giao điểm nằm bên trái trục tung nghĩa là hoành độ âm
\(\Leftrightarrow \frac{2m-2}{9}< 0\Leftrightarrow m< 1\)
c)
Giao điểm nằm ở góc phần tư thứ 2 nghĩa là hoành độ âm, tung độ dương
\(\Leftrightarrow \left\{\begin{matrix} \frac{2m-2}{9}< 0\\ \frac{5m+7}{3}>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m< 1\\ m> -1,4\end{matrix}\right.\)
chịu thui mk mới học lớp 6
à
nên ko làm được bài lớp 9 đâu
hihi tặng bn mấy ảnh conan nè
thick ko nhé bn
hihi tặng các bn đó
a) Để (d1) song song vơi (d2) thì:
a = a'
\(\Leftrightarrow m-1=3\)
\(\Leftrightarrow m=4\)
Vậy (d1) // (d2) khi m = 4
b) Để (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành thì:
\(\Rightarrow\)y = 0
\(\Leftrightarrow0=3x+1\)
\(\Leftrightarrow3x+1=0\)
\(\Leftrightarrow3x=1\)
\(\Leftrightarrow x=\frac{1}{3}\)
Với x = \(\frac{1}{3}\)và y = 0 ta có:
(m - 1).\(\frac{1}{3}\)+ 2m - 5 = 0
\(\Leftrightarrow\frac{m-1}{3}+\frac{6m}{3}-\frac{15}{3}=0\)
\(\Leftrightarrow m-1+6m-5=0\)
\(\Leftrightarrow7m=6\)
\(\Leftrightarrow m=\frac{6}{7}\)
Vậy (d1) cắt (d2) tại 1 điểm trên trục hoành khi m = \(\frac{6}{7}\)
Lời giải:
a) \(d_1\) đi qua gốc tọa độ nghĩa là \((d_1)\) đi qua điểm \((0;0)\)
\(\Rightarrow 0=2.0+m-3\Leftrightarrow m-3=0\Leftrightarrow m=3\)
b)
PT giao điểm của \(d_1\cap d_3\):
\((2x+m-3)-(4x-1)=0\)
\(\Leftrightarrow -2x+m-2=0\)
\(\Leftrightarrow x=\frac{m-2}{2}\)
Như vậy, giao điểm của \(d_1\cap d_3\) sẽ có dạng :
\(\left(\frac{m-2}{2};4.\frac{m-2}{2}-1\right)=\left(\frac{m-2}{2}; 2m-5\right)\)
Vì \(d_1,d_2,d_3\) đồng quy nên \(\left(\frac{m-2}{2};2m-5\right)\in d_2\)
\(\Rightarrow 2m-5=(m+1).\frac{m-2}{2}-3\)
\(\Leftrightarrow m^2-5m+2=0\) \(\Leftrightarrow m=\frac{5\pm \sqrt{17}}{2}\)
c)
Trước tiên ta cần tìm giao điểm của d3 và trục hoành
Vì giao điểm thuộc trục hoành nên tung độ bằng 0
\(\Rightarrow 0=4x-1\Leftrightarrow x=\frac{1}{4}\)
Như vậy giao điểm của d3 với trục hoành là: \((\frac{1}{4},0)\)
\((\frac{1}{4},0)\in d_1\Rightarrow 0=2.\frac{1}{4}+m-3\Leftrightarrow m=\frac{5}{2}\)
d) Trước tiên ta cần tìm giao điểm của d3 và trục tung
Vì giao điểm thuộc trục tung nên hoành độ bằng 0
suy ra \(y=4x-1=4.0-1=-1\)
Vậy giao của d3 và trục tung là \((0;-1)\)
Ta có \((0;-1)\in (d_2)\Rightarrow -1=(m+1).0-3\Leftrightarrow -1=-3\) (vô lý)
Vậy không tồn tại m thỏa mãn.