Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{1}{3}x+m+\dfrac{1}{3}=2x-6m+5\\y=\dfrac{1}{3}x+m+\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{5}{3}x=-7m+5\\y=\dfrac{1}{3}x+m+\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{21}{5}m-3\\y=\dfrac{1}{3}\left(\dfrac{21}{5}m-3\right)+m+\dfrac{1}{3}=\dfrac{7}{5}m-1+m+\dfrac{1}{3}=\dfrac{12}{5}m-\dfrac{2}{3}\end{matrix}\right.\)
b: Theo đề, ta có: \(\dfrac{12}{5}m-\dfrac{2}{3}=9\cdot\left(\dfrac{21}{5}m-3\right)^2\)
Đến đây bạn chỉ cần giải phương trình bậc hai ra thôi
\(m=1\Leftrightarrow\left\{{}\begin{matrix}\left(d_1\right):y=-2x-2\\\left(d_2\right):y=2x-2\end{matrix}\right.\\ \text{PTHDGD: }-2x-2=2x-2\Leftrightarrow x=0\Leftrightarrow y=-2\Leftrightarrow A\left(0;-2\right)\\ \text{PT giao Ox: }\left\{{}\begin{matrix}y=0\Leftrightarrow x=-1\Leftrightarrow B\left(-1;0\right)\Leftrightarrow OB=1\\y=0\Leftrightarrow x=1\Leftrightarrow C\left(1;0\right)\Leftrightarrow OC=1\end{matrix}\right.\\ \Leftrightarrow BC=1+1=2\\ AB=AC=\sqrt{2^2+1^2}=\sqrt{3}\\ OA=\left|-2\right|=2\\ \Leftrightarrow P_{ABC}=AB+BC+CA=2+2\sqrt{3}\left(đvd\right)\\ S_{ABC}=\dfrac{1}{2}OA\cdot BC=\dfrac{1}{2}\cdot2\cdot2=2\left(đvdt\right)\)
Gọi góc đó là \(\alpha\)
Vì \(2>0\Leftrightarrow\alpha< 90^0\)
\(\tan\alpha=2\Leftrightarrow\alpha\approx63^0\)
PTHDGD: \(\left(2m-5\right)x-m-2=-3-x\)
2 đt cắt tại 1 điểm trên trục tung nên x=0
\(\Leftrightarrow-m-2=-3\Leftrightarrow m=1\)
Để hai đường thing d1 và d2 song song với nhau
=>\(\left\{{}\begin{matrix}a=a^,\\b\ne b^,\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6=-2\\m\ne3\end{matrix}\right.\)
\(\Leftrightarrow m=\mp2\) t/m
Vậy với m ,,, thì d1 // d2
Theo bài ra ta có ddường thing d cắt trục ting tại điểm có tung độ bằng 2 , gọi giao điểm của d1 và Oy là A
=> \(A_{\left(0,2\right)}\)
=> A \(\in\) \(\left(d1\right)y=\left(m^2-6\right)x+m\)
=> Thay x = 0 và y = 2 vào phương trình đường thẳng d1 ta được :
m= 2
Vậy ,,,,
- Để 2 đường thẳng trên cắt nhau tại 1 điểm trên trục tung khi chúng có cùng tung độ gốc hay .
\(5-m=3+m\)
=> \(2m=2\)
=> \(m=1\)
Vậy để 2 đường thẳng trên cắt nhau tại 1 điểm trên trục tung thì m = 1 .