Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
......................?
mik ko biết
mong bn thông cảm
nha ................
a. Xét A(1:6)
Đăt:+xA=1
+xB=6.
Thay xB, yB vào đồ thì hàm số y=mx+3
Ta có: 6=m*1+2
=>m=6-2
=>m=4
Mấy câu kia làm tương tự nhé!!!! :D
điểm cố Định A(0;4) ko phụ thuộc m ; vậy dồ thi phải cắt truc hoành tại B(+-4;0); 4m+4=0=m=-1; -m+4=0=>=m=1
1: y=(m+5)x+2m-10
=>(m+5)x-y+2m-10=0
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m+5\right)+0\cdot\left(-1\right)+2m-10\right|}{\sqrt{\left(m+5\right)^2+\left(-1\right)^2}}=\dfrac{\left|2m-10\right|}{\sqrt{\left(m+5\right)^2+1}}\)
Để d(O;(d))=1 thì \(\dfrac{\left|2m-10\right|}{\sqrt{\left(m+5\right)^2+1}}=1\)
=>\(\sqrt{\left(m+5\right)^2+1}=\left|2m-10\right|=\sqrt{4m^2-40m+100}\)
=>\(4m^2-40m+100=m^2+10m+26\)
=>\(3m^2-50m+74=0\)
=>\(m=\dfrac{25\pm\sqrt{403}}{3}\)
2: Gọi A,B lần lượt là tọa độ giao điểm của (d) với trục Ox,Oy
Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(m+5\right)x+2m-10=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\\left(m+5\right)x=-2m+10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{-2m+10}{m+5}\end{matrix}\right.\)
=>\(OA=\left|\dfrac{-2m+10}{m+5}\right|=\left|\dfrac{2m-10}{m+5}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m+5\right)x+2m-10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=0\cdot\left(m+5\right)+2m-10=2m-10\end{matrix}\right.\)
=>OB=|2m-10|
ΔOAB vuông tại O
=>\(S_{AOB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{\left|2m-10\right|}{\left|m+5\right|}\cdot\left|2m-10\right|\)
\(=\dfrac{\left|\left(m-5\right)\left(2m-10\right)\right|}{\left|m+5\right|}=\left|\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}\right|\)
\(S=3\) khi \(\left|\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}\right|=3\)
=>\(\left[{}\begin{matrix}\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}=3\\\dfrac{\left(m-5\right)\left(2m-10\right)}{m+5}=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2m^2-10m-10m+50=3m+15\\2m^2-20m+50=-3m-15\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2m^2-20m+50-3m-15=0\\2m^2-20m+50+3m+15=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2m^2-23m+35=0\\2m^2-17m+65=0\end{matrix}\right.\)
=>\(m\in\left\{\dfrac{23\pm\sqrt{249}}{4}\right\}\)