K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2016

Ta có 

A = a6 + b6 = (a2 + b2)(a4 - a2 b2 + b4)

= a4 - a2 b2 + b4 = (a2 + b2)2 - 3a2b2 = 1 - 3a2 b2 (1)

Ta lại có

1 = a2 + b2 \(\ge\)2ab

\(\Rightarrow ab\le\frac{1}{2}\)(2)

Từ (1) và (2) =>A \(\ge1-\frac{3}{4}=\frac{1}{4}\)

Đạt được khi a2 = b2 = 0,5

Giá trị lớn nhất không có

18 tháng 11 2016

\(A=a^6+b^6=\left(a^2\right)^3+\left(b^2\right)^3\)

\(=\left(a^2+b^2\right)\left(a^4+b^4-a^2b^2\right)\)

\(=1.\left[\left(a^4+b^4+2a^2b^2\right)-3a^2b^2\right]\)

\(=\left(a^2+b^2\right)^2-3a^2b^2\)

\(=1^2-3a^2b^2\)

\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2-2ab\ge0\Rightarrow\frac{a^2+b^2}{2}\ge ab\)

\(\Rightarrow ab\le1:2=0,5\Rightarrow3a^2b^2\le\frac{3}{4}\)

\(\Rightarrow A=1^2-3a^2b^2\ge1-\frac{3}{4}=\frac{1}{4}\)

\(\Rightarrow MinA=\frac{1}{4}\Leftrightarrow a=b=\frac{1}{2}\)

Vậy ...

6 tháng 6 2022

sai rồi kìa

10 tháng 4 2021

undefined

11 tháng 4 2019

Áp dụng BĐT Bun-hia-cop-xki ta có:

\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{4}{3}\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2\end{cases}\Leftrightarrow a=b=c=\frac{2}{3}}\)

Vậy \(A_{min}=\frac{4}{3}\)khi \(a=b=c=\frac{2}{3}\)

11 tháng 4 2019

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

Suy ra \(A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)

\(=4-2\left(ab+bc+ca\right)\)

Ta có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\).Thay vào tìm được min

NV
16 tháng 4 2021

\(a+b\ge a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\)

\(\Rightarrow2\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le1\)

Xét \(Q=\dfrac{a}{a+1}+\dfrac{b}{b+1}=\dfrac{a\left(b+1\right)+b\left(a+1\right)}{\left(a+1\right)\left(b+1\right)}=\dfrac{a+b+2ab}{\left(a+1\right)\left(b+1\right)}\)

\(Q=\dfrac{a+b+ab+ab}{\left(a+1\right)\left(b+1\right)}\le\dfrac{a+b+ab+1}{\left(a+1\right)\left(b+1\right)}=\dfrac{\left(a+1\right)\left(b+1\right)}{\left(a+1\right)\left(b+1\right)}=1\)

\(\Rightarrow P\le2020+1^{2021}=2021\)

Dấu "=" xảy ra khi \(a=b=1\)

2 tháng 2 2019

Ta có a3+b3=(a+b)(a2−ab+b2)=a2−ab+b2a3+b3=(a+b)(a2−ab+b2)=a2−ab+b2 ( vì a+b=1)

Lại có 2(a−b)2≥0⇔2a2−4ab+2b2≥0⇔4a2−4ab+4b2≥2a2+2b2⇔4(a2−ab+b2)≥2(a2+b2)≥(a+b)2=1⇔4(a2−ab+b2)≥1⇔a2−ab+b2≥14⇒a3+b3≥142(a−b)2≥0⇔2a2−4ab+2b2≥0⇔4a2−4ab+4b2≥2a2+2b2⇔4(a2−ab+b2)≥2(a2+b2)≥(a+b)2=1⇔4(a2−ab+b2)≥1⇔a2−ab+b2≥14⇒a3+b3≥14

Vậy Min M=14⇔a=b=12

2 tháng 2 2019

Ta có : M = a3 + b3 + ab

= ( a + b ) ( a2 - ab + b2 ) + ab = a2 + b2

a + b = 1 \(\Rightarrow\)a2 + 2ab + b2 = 1   ( 1 ) 

mặt khác : ( a - b )2  \(\ge\)\(\Rightarrow\)a2 - 2ab + b2 \(\ge\)0   ( 2 )

Cộng ( 1 ) với ( 2 ), ta được 2 ( x2 + y2 ) \(\ge\)\(\Rightarrow\)( x2 + y2 ) \(\ge\)\(\frac{1}{2}\)

\(\Rightarrow\)giá trị nhỏ nhất của M = \(\frac{1}{2}\) \(\Leftrightarrow\)x = y = \(\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2023

Lời giải:

Do $a\geq 4, b\geq 5, c\geq 6$

$\Rightarrow c^2=90-a^2-b^2\leq 90-4^2-5^2=49$

$\Rightarrow c\leq 7$

$a^2=90-b^2-c^2\leq 90-5^2-6^2=29< 81$

$\Rightarrow a< 9$

$b^2=90-a^2-c^2=90-4^2-6^2=38< 64$

$\Rightarrow b< 8$

Vậy $4\leq a< 9, 5\leq b< 8, 6\leq c\leq 7$

Suy ra:

$(a-4)(a-9)\leq 0$

$(b-5)(b-8)\leq 0$

$(c-6)(c-7)\leq 0$

$\Rightarrow (a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\leq 0$

$\Rightarrow a^2+b^2+c^2+118\leq 13(a+b+c)$

$\Rightarrow 90+208\leq 13P$
$\Rightarrow P\geq 16$

Vậy $P_{\min}=16$. Giá trị này đạt tại $(a,b,c)=(4,5,7)$