Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
OM là bán kính
EF\(\perp\)OM tại M
Do đó: EF là tiếp tuyến của (O)
b: Xét (O) có
EM,EA là các tiếp tuyến
Do đó: EM=EA
Xét (O) có
FM,FB là các tiếp tuyến
Do đó: FM=FB
Ta có: EF=EM+MF
mà EM=EA và FM=FB
nên EF=EA+FB
góc ACB=góc ADB=1/2*180=90 độ
=>BC vuông góc AE và BD vuông góc AF
ΔABE vuông tại B có BC là đường cao
nên AC*AE=AB^2
ΔABF vuông tại B có BDlà đường cao
nên AD*AF=AB^2
=>AC*AE=AD*AF
=>AC/AF=AD/AE
=>ΔACD đồng dạng vớiΔAFE
=>góc ACD=góc AFE
=>góc DCE+góc DFE=180 độ
=>DCEF nội tiếp
a: Xét tứ giác CAOK co
góc CAO+góc CKO=180 độ
nên CAOK là tứ giác nội tiếp
b: Xét (O) có
CK,CA là tiếp tuyến
nên CK=CA và OC là phân giác của góc AOK(1)
Xét (O) có
DK,DB là tiếp tuyến
nên DK=DB và OD là phân giác của góc KOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
OK^2=KC*KD
=>AC*BD=R^2 ko đổi
c: Xét ΔOAK có OA=OK=AK
nên ΔOAK đều
=>gócc AOK=60 độ
=>góc KOB=120 độ
=>góc KDB=60 độ
mà DK=DB
nên ΔDKB đều
B A X Y Z K H E F T I
Gọi I là giao điểm của AX và BY.
Ta có: ^XAY = ^YBX = 900 => Tứ giác ABXY nội tiếp đường tròn đường kính XY => ^BAX = ^BYX
Mà ^BYX = ^BHX nên ^BAX = ^BHX => \(\Delta\)XHB ~ \(\Delta\)XBA (g.g) => XB2 = XH.XA
Hay XZ2 = XH.XA => \(\Delta\)XHZ ~ \(\Delta\)XZA (c.g.c) => ^XZH = ^XAZ => ^XEZ = ^XAZ
=> Tứ giác AEXZ nội tiếp => ^AXE = ^AZE = 1800 - ^XZE - ^YZA = 1800 - ^XAZ - ^YAZ = 1800 - ^XAY = 900
=> ^AXE = ^XAY (=900) => XE // YA. Tương tự: XB // YF => ^BXE = ^FYA
Mà 2 tam giác BXE và FYA cân tại các đỉnh X và Y nên \(\Delta\)BXE ~ \(\Delta\)FYA (g.g)
=> \(\frac{BE}{FA}=\frac{XE}{YA}=\frac{XB}{YA}=\frac{IB}{IA}\)(Do \(\Delta\)BIX ~ \(\Delta\)AIY).
Đồng thời: BE,FA là cặp cạnh tương ứng của \(\Delta\)BXE ~ \(\Delta\)FYA . Mà XE // YA, XB // YF nên BE // FA
Áp dụng hệ quả ĐL Thales: \(\frac{BE}{FA}=\frac{TB}{TA}\). Từ đó: \(\frac{IB}{IA}=\frac{TB}{TA}\)=> IT là phân giác ^AIB (1)
Mặt khác: \(\frac{IX}{IY}=\frac{BX}{AY}=\frac{BZ}{AZ}\)=> BZ là phân giác ^XIY (2)
Từ (1) và (2), kết hợp với ^AIB, ^XIY đối đỉnh => Z,I,T thẳng hàng => ZT đi qua I
Do đó: 3 đường thẳng XA,YB,ZT đồng quy (đpcm).