Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I O O'
1/ Ta có
IB=IA=IC (Hai tiếp tuyến cùng xp từ 1 điểm thì kc từ điểm đó đến hai tiếp điểm bằng nhau
=> tg IAB và tg IAC cân tại I \(\Rightarrow\widehat{IBA}=\widehat{IAB}\) và \(\widehat{ICA}=\widehat{IAC}\)
Xét tg IAB có \(\widehat{AIB}=180^o-\left(\widehat{IBA}+\widehat{IAB}\right)=180^o-2.\widehat{IAB}\) (1)
Xét tg IAC có \(\widehat{AIC}=180^o-\left(\widehat{IAC}+\widehat{ICA}\right)=180^o-2.\widehat{IAC}\) (2)
Công 2 vế của (1) và (2)
\(\Rightarrow\widehat{AIB}+\widehat{AIC}=360^o-2\left(\widehat{IAB}+\widehat{IAC}\right)\)
\(\Rightarrow\widehat{BIC}=180^o=360^o-2\widehat{BAC}\Rightarrow\widehat{BAC}=90^o\) => tg ABC vuông tại A
2/
Ta có
tg AIB cân tại I (cmt)
\(OI\perp AB\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối hai tiếp điểm)
=> IO là phân giác của \(\widehat{AIB}\Rightarrow\widehat{AIO}=\widehat{BIO}=\frac{\widehat{AIB}}{2}\) (trong tg cân đường cao xp từ đỉnh đồng thời là đường phân giác)
C/m tương tự ta cũng có \(\widehat{AIO'}=\widehat{CIO'}=\frac{\widehat{AIC}}{2}\)
\(\Rightarrow\widehat{AIO}+\widehat{AIO'}=\widehat{OIO'}=\frac{\widehat{AIB}+\widehat{AIC}}{2}=\frac{180^o}{2}=90^o\) => tg OIO' vuông tại I
3/
Hai đường tròn tiếp xúc ngoài thì đường nối tâm hai đường tròn đi qua điểm tiếp xúc => O, A, O' thẳng hàng
Xét tg vuông OIO' có
\(IA^2=OA.O'A\) (trong tg vuông bình phương đường cao từ đỉnh góc vuông bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền) \(\Rightarrow IA=\sqrt{OA.OA'}=\sqrt{R.R'}\)
Ta có IB=IA=IC (cmt) => \(IA=\frac{BC}{2}\Rightarrow BC=2.IA=2\sqrt{R.R'}\)
a, Xét tam giác MON có : OM = ON = R
=> tam giác MON cân tại O, do OI vuông MN hay OI là đường cao
đồng thời là đường phân giác => ^MOI = ^ION
Vì BN là tiếp tuyến đường tròn (O) với N là tiếp điểm
=> ON vuông BN hay ^ONB = 900
Xét tam giác IOM và tam giác NOB có :
^IOM = ^NOB ( cmt )
^OIM = ^ONB = 900
Vậy tam giác IOM ~ tam giác NOB ( g.g )
=> \(\frac{IO}{NO}=\frac{IM}{NB}\Rightarrow IO.NB=IM.NO\)
ý b sáng mai mình gửi nhé ;))
sửa hộ mình chỗ này nhé : ^OIM = ^ONB = 900
b, Vì I là trung điểm điểm OA => \(IO=IA=\frac{OA}{2}=\frac{R}{2}\)
Theo định lí Pytago tam giác OIM ta được :
\(MI=\sqrt{OM^2-OI^2}=\sqrt{R^2-\frac{R^2}{4}}=\sqrt{\frac{3R^2}{4}}=\frac{\sqrt{3}R}{2}\)
Vì BM là tiếp tuyến đường tròn (O) và M là tiếp điểm
=> OM vuông MB hay ^OMB = 900 => tam giác OMB vuông tại M
Xét tam giác OMB vuông tại M, đường cao MI
Áp dụng hệ thức : \(\frac{1}{OM^2}+\frac{1}{MB^2}=\frac{1}{MI^2}\Rightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{1}{\frac{3R^2}{4}}\)
\(\Leftrightarrow\frac{1}{R^2}+\frac{1}{MB^2}=\frac{4}{3R^2}\Leftrightarrow\frac{1}{MB^2}=\frac{4}{3R^2}-\frac{1}{R^2}=\frac{1}{3R^2}\Rightarrow MB=\sqrt{3}R\)
CM : tam giác OMB = tam giác ONB ( ch - gn )
Ta có : \(S_{OMNB}=S_{OMB}+S_{ONB}=2S_{OMB}=\frac{2.1}{2}.OM.MB\)
\(=R.\sqrt{3}R=\sqrt{3}R^2\)
Ta có:
\(\sqrt{2016a+\frac{\left(b-c\right)^2}{2}}=\sqrt{2016a+\frac{b^2-2bc+c^2}{2}}=\sqrt{2016a+\frac{b^2+2bc+c^2-4bc}{2}}\)
\(=\sqrt{2016a+\frac{\left(b+c\right)^2-4bc}{2}}=\sqrt{2016a+\frac{\left(b+c\right)^2}{2}-2bc}\)
\(\le\sqrt{2016a+\frac{\left(b+c\right)^2}{2}}\left(b,c\ge0\right)=\sqrt{2016a+\frac{\left(a+b+c-a\right)^2}{2}}\)
\(=\sqrt{2016a+\frac{\left(1008-a\right)^2}{2}}=\sqrt{\frac{\left(1008+a\right)^2}{2}}=\frac{1008+a}{\sqrt{2}}\left(a\ge0\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{2016b+\frac{\left(c-a\right)^2}{2}}\le\frac{1008+b}{\sqrt{2}};\sqrt{2016c+\frac{\left(a-b\right)^2}{2}}\le\frac{1008+c}{\sqrt{2}}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{3\cdot1008+\left(a+b+c\right)}{\sqrt{2}}=\frac{4\cdot1008}{\sqrt{2}}=2016\sqrt{2}\)
Chọn B