K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2015

F(x)+Q(x) = 2x^3 +4x -x^2

F(x) - Q(x) = -2x +x^2 -2                           

16 tháng 4 2016

ta co : F{x} - G{x} +H{x} = 2x^2 - 1

ma F{x} -G{X} +H{x} = 5

2x^2 - 1 = 5

2x^2 =5+1

2X^2= 6

x^2= 6: 2

x^2= 3

[x=\(-\sqrt{3}\)

[x= \(\sqrt{3}\)

vay x=\(\sqrt{3}\)

x=\(-\sqrt{3}\)

18 tháng 6 2021

Ta có h(x) = f(x) - g(x) 

= -x5 + 2x4 - x2 - 1 - (-6 + 2x + 3x3 - x4 - 3x5)

= 2x5 + 3x4 - 3x3 - x2 - 2x + 5

q(x) = g(x) - f(x) = -[f(x) - g(x)]

- h(x) = -2x5 - 3x4 + 3x3 + x2 + 2x - 5 (1)

Ta có h(1) = 2.15 + 3.14 - 3.13 - 12 - 2.1 + 5 = 4

h(-1) = 2(-1)5 + 3.(-1)4 - 3(-1)3 - (-1)2 - 2(-1) + 5

= 10

h(-2) = 2(-2)5 + 3.(-2)4 - 3(-2)3 - (-2)2 - 2(-2) + 5

= 17

h(2) = 2.25 + 3.24 - 3.23 - 22 - 2.2 + 5 = 85

Vì h(x) = -g(x) 

=> g(1) = - 4 ; g(-1) = 10 ; g(2) = -85 ; g(-2) = 17

b) 

Từ (1) => h(x) = -g(x) 

19 tháng 6 2021

thank you nhìu

6 tháng 4 2017

em vs sap di hoc r

1 tháng 3 2017

\(\left\{\begin{matrix}f\left(x\right)=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\left(1\right)\\g\left(x\right)=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\left(2\right)\end{matrix}\right.\)

Sắp xếp số mũ của (ẩn theo một trình tự, Thường, nên giảm dần"

Tính f(x)+g(x) lấy (1) cộng (2)

\(f\left(x\right)+g\left(x\right)=\left(1-1\right)x^5+\left(7+5\right)x^4+\left(-9-2\right)x^3+\left(-2+4\right)x^2+\left(-\dfrac{1}{4}\right)x+\left(-\dfrac{1}{4}\right)\)

\(f\left(x\right)+g\left(x\right)=12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)

Tính f(x)-g(x) lấy (1) trừ (2)

\(f\left(x\right)-g\left(x\right)=2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x+\dfrac{1}{4}\)

1 tháng 4 2019

\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)

\(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)

=\(4x+\frac{16}{3}\)

2 tháng 4 2019

sao làm csw mỗi câu z bạn

Đề thiếu rồi bạn

6 tháng 6 2018

Giải:

a) \(F\left(x\right)+G\left(x\right)-H\left(x\right)\)

\(=4x^2+3x-2+3x^2-2x+5-\left[x\left(5x-2\right)+3\right]\)

\(=4x^2+3x-2+3x^2-2x+5-\left(5x^2-2x+3\right)\)

\(=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3\)

\(=2x^2+3x\)

Để \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)

\(\Leftrightarrow2x^2+3x=0\)

\(\Leftrightarrow x\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(F\left(x\right)-3x+5\)

\(=4x^2+3x-2-3x+5\)

\(=4x^2+3\)

\(x^2\ge0;\forall x\)

\(\Leftrightarrow4x^2\ge0;\forall x\)

\(\Leftrightarrow4x^2+3\ge3>0;\forall x\)

Vậy ...