K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

a) Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa tăng của biến.

\(P\left(x\right)=3x^2-5+x^4-3x^3-x^6-2x^2-x^3\)

         \(=x^2-5+x^4-4x^3-x^6\)

Sắp xếp : \(-5+x^2+x^4-4x^3-x^6\)

\(Q\left(x\right)=x^3+2x^5-x^4+x^2-2x^3+x-1\)

         \(=-x^3+2x^5-x^4+x^2+x-1\)

Sắp xếp : \(-1+x+x^2-x^3-x^4+2x^5\)

b ) Ta có : 

                    \(P\left(x\right)=-5+x^2-4x^3+x^4-x^6\)

                    \(Q\left(x\right)=-1+x+x^2-x^3-x^4+2x^5\)

                     --------------------------------------------------

 \(P\left(x\right)+Q\left(x\right)=-6+x+2x^2-5x^3+2x^5-x^6\)

  \(P\left(x\right)-Q\left(x\right)=4+x+3x^2-2x^4+2x^5+x^6\)

  

27 tháng 8 2016

a) Lũy thừa tăng của biến:

\(P\left(x\right)=3x^2-5+x^4-3x^3-x^6-2x^2-x^3\)

\(=\left(3x^2-2x^2\right)+\left(-3x^3-x^3\right)+x^4-x^6-5\)

\(=x^2-4x^3+x^4-x^6-5\)

\(=-5+x^2-4x^3+x^4-x^6\)

\(Q\left(x\right)=x^3+2x^5-x^4+x^2-2x^3+x-1\)

\(=\left(x^3-2x^3\right)+2x^5-x^4+x^2+x-1\)

\(=-x^3+2x^5-x^4+x^2+x-1\)

\(=-1+x+x^2-x^3-x^4+2x^5\)

b) P(x)+Q(x)

\(P\left(x\right)+Q\left(x\right)=\left(-5+x^2-4x^3+x^4-x^6\right)+\left(-1+x+x^2-x^3-x^4+2x^5\right)\)

\(=\left(-5\right)+x^2-4x^3+x^4-x^6+\left(-1\right)+x+x^2-x^3-x^4+2x^5\)

\(=\left(-5-1\right)+x+\left(x^2+x^2\right)+\left(-4x^3-x^3\right)+\left(x^4-x^4\right)+2x^5-x^6\)

\(=-6+x+2x^2-5x^3+2x^5-x^6\)

\(P\left(x\right)-Q\left(x\right)=\left(-5+x^2-4x^3+x^4-x^6\right)-\left(-1+x+x^2-x^3-x^4+2x^5\right)\)

\(=\left(-5\right)+x^2-4x^3+x^4-x^6+1-x-x^2+x^3+x^4-2x^5\)

\(=\left(-5+1\right)+x+\left(x^2-x^2\right)+\left(-4x^3+x^3\right)+\left(x^4+x^4\right)-2x^5-x^6\)

\(=-4+x-3x^3+2x^4-2x^5-x^6\)

hihi ^...^ vui^_^

 

 

a) P(x) = 3x2 - 5 + x4 - 3x3 - x6 - 2x2 - x3

           = -5 + 3x2 - 2x2 + (-3x3 - x3) + x4 - x6

           = -5 + x2 - 4x3 + x4 - x6

Q(x) = x3 + 2x5 - x4 + x2 - 2x3 + x - 1

       = -1 + x + x2 + (x3 - 2x3) - x4 + 2x5

       = -1 + x + x2 - x3 - x4 + 2x5

b) P(x) + Q(x) = -5 + x2 - 4x3 + x4 - x6 + (-1) + x + x2 - x3 - x4 + 2x5

                     = -x6 + 2x5 + x4 - x4 + (-4x3 - x3) + (x2 + x2) + x + [ -5 + (-1)]

                    = -x6 + 2x5 - 5x3 + 2x2 + x -6

P(x) - Q(x) = tự làm nhé

6 tháng 4 2017

Đáp án đúng phải là

\(h\left(x\right)=2x^5+5x^4+x^3-x^2-3x+6\)

15 tháng 5 2016

\(P\left(x\right)=-4x^4+3x^3+4x^2+3x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=-x^5-2x^4+x^3+7x^2+2x+\frac{25}{4}\)

\(P\left(x\right)-Q\left(x\right)=x^5-6x^4+5x^3+x^2+4x+\frac{23}{4}\)

15 tháng 5 2016

P(x) = -4x^4 + (5x^3 - 2x^3) + 4x^2 + 3x + 6

       = -4x^4 + 3x^3 + 4x^2 + 3x + 6

Q(x) = -x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4

P(x) + Q(x) = (-4x^4 + 3x^3 + 4x^2 + 3x + 6) + (-x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4)

                   = -4x^4 + 3x^3 + 4x^2 + 3x + 6 - x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4

                   = -x^5 - (4x^4 - 2x^4) + (3x^3 - 2x^3) + (4x^2 + 3x^2) + (3x - x) + (6 + 1/4)

                   = -x^5 - 2x^4 + x^3 + 7x^2 + 2x + 25/4

P(x) - Q(x) = (-4x^4 + 3x^3 + 4x^2 + 3x + 6) - (-x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4)

                  = -4x^4 + 3x^3 + 4x^2 + 3x + 6 + x^5 - 2x^4 + 2x^3 - 3x^2 + x - 1/4

                  = x^5 - (4x^4 + 2x^4) + (3x^3 + 2x^3) + (4x^2 - 3x^2) + (3x + x) + (6 - 1/4)

                  = x^5 - 6x^4 + 5x^3 + x^2 + 4x + 23/4

Chúc bạn học tốtok

18 tháng 6 2021

Ta có h(x) = f(x) - g(x) 

= -x5 + 2x4 - x2 - 1 - (-6 + 2x + 3x3 - x4 - 3x5)

= 2x5 + 3x4 - 3x3 - x2 - 2x + 5

q(x) = g(x) - f(x) = -[f(x) - g(x)]

- h(x) = -2x5 - 3x4 + 3x3 + x2 + 2x - 5 (1)

Ta có h(1) = 2.15 + 3.14 - 3.13 - 12 - 2.1 + 5 = 4

h(-1) = 2(-1)5 + 3.(-1)4 - 3(-1)3 - (-1)2 - 2(-1) + 5

= 10

h(-2) = 2(-2)5 + 3.(-2)4 - 3(-2)3 - (-2)2 - 2(-2) + 5

= 17

h(2) = 2.25 + 3.24 - 3.23 - 22 - 2.2 + 5 = 85

Vì h(x) = -g(x) 

=> g(1) = - 4 ; g(-1) = 10 ; g(2) = -85 ; g(-2) = 17

b) 

Từ (1) => h(x) = -g(x) 

19 tháng 6 2021

thank you nhìu

25 tháng 3 2018

Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa tăng của biến.

Thu gọn: P(x) = 3x2 - 5 + x- 3x3 - x6 - 2x2 - x3 

                     = x2 - 5 + x- 4x3 - x6 

Sắp xếp: P(x) = -5 + x2 - 4x3 + x- x6 

Thu gọn: Q(x) = x3 + 2x5 - x4 + x2 - 2x3 + x - 1= -x3 +2x5 - x4 + x2 + x - 1

Sắp xếp: Q(x) = -1 + x + x2 - x3 - x4 + 2x5 

22 tháng 4 2017

a. Sắp xếp theo lũy thừa giảm dần của biến:

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\)

b. P(x) - Q(x)=\(\left(5x^5-4x^4-2x^3+4x^2+3x+6\right)-\left(-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}\right)\)

=\(5x^5-4x^4-2x^3+4x^2+3x+6+x^5-2x^4+2x^3-3x^2+x-\dfrac{1}{4}\)

=\(\left(5x^5+x^5\right)+\left(-4x^4-2x^4\right)+\left(-2x^3+2x^3\right)+\left(4x^2-3x^2\right)+\left(3x+x\right)+\left(6-\dfrac{1}{4}\right)\)

=\(6x^5-6x^4+x^2+4x+\dfrac{23}{4}\)

c.Ta có:\(P\left(-1\right)=5.\left(-1\right)^5-4.\left(-1\right)^4-2.\left(-1\right)^3+4.\left(-1\right)^2+3.\left(-1\right)+6\)

= -5 -4 +2 +4 -3 +6

= 0

\(Q\left(x\right)=-\left(-1\right)^5+2.\left(-1\right)^4-2.\left(-1\right)^3+3.\left(-1\right)^2-\left(-1\right)+\dfrac{1}{4}\)

= 1 + 2 +2 +3 +1 +\(\dfrac{1}{4}\)

= \(\dfrac{37}{4}\ne0\)

Vậy x=-1 là nghiệm của đa thức P(x) nhưng k là nghiệm của đa thức Q(x)