Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nãy h bn đã tài trợ cho mình 2 tb đaay ak :v
Lần sau nếu lm sai hãy cmt vào bài lm của bn đi ak :))
a) P(x)=2x^3 - 3x + x^5 - 4x^3 + 4x - x^5 + x^2 - 2
= ( 2x^3 - 4x^3 ) + x^2 + ( -3x + 4x ) + ( x^5 - x^5 ) - 2
= -2x^3 + x^2 + x - 2
Q(x)=x^3 - 2x^2 + 3x +1 - 2x^2
= x^3 + ( -2x^2 - 2x^2 ) + 3x + 1
= x^3 - 4x^2 + 3x + 1
b) M(x) = P(x) - Q(x) = ( -2x^3 + x^2 + x - 2 ) - ( x^3 - 4x^2 + 3x + 1 )
= -2x^3 + x^2 + x - 2 - x^3 + 4x^2 - 3x - 1
= ( -2x^3 - x^3 ) + ( x^2 + 4x^2 ) + ( x - 3x ) + ( - 2 - 1 )
= -3x^3 + 5x^2 - 2x - 3
c) Bậc M(x) là 3
a) \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(=\left(2x^3-x^3\right)+x^2+\left(-2x+3x\right)+2\)
\(=x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)
\(=\left(3x^3-4x^3\right)+\left(-4x^2+5x^2\right)+\left(3x-4x\right)+1\)
\(=-x^3+x^2-x+1\)
b) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(=\left(x^3+x^2+x+2\right)+\left(-x^3+x^2-x+1\right)\)
\(=2x^2+3\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(=\left(x^3+x^2+x+2\right)-\left(-x^3+x^2-x+1\right)\)
\(=2x^3+2x+1\)
c) \(M\left(x\right)=2x^2+3>0\)vì \(2x^2\ge0,3>0\)do đó đa thức \(M\left(x\right)\)vô nghiệm.
a) P(x) = 2x3 - 2x + x2 - x3 + 3x + 2
P(x) = (2x3 - x3) + x2 + (-2x + 3x) + 2
P(x) = x3 + x2 + x + 2
Q(x) = 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1
Q(x) = (4x3 - 3x3) + (-5x2 + 4x2) + (3x - 4x) + 1
Q(x) = x3 + x2 - x + 1
b) P(x) + Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) + (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)
= 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1
= (2x3 - x3 + 4x3 - 3x3) + (-2x + 3x + 3x - 4x) + (x2 - 5x2 + 4x2) + (2 + 1)
= 2x3 + 3
P(x) - Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) - (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)
= 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 - 1
= (2x3 - x3 + 4x3 + 3x2) + (-2x + 3x - 3x + 4x) + (x2 + 5x2 - 4x2) + (2 - 1)
= 8x2 + 2x + 2x2 + 1
c) P(-1) = 2.(-1)3 - 2.(-1) + (-1)2 - (-1)3 + 3.(-1) + 2
= -2 - (-2) + 1 - (-1) - 3 + 2
= 1
Q(2) = 2.23 - 2.2 + 22 - 23 + 3.2 + 2
= 16 - 4 + 4 - 8 + 6 + 2
= 16
Đáp án:
Giải thích các bước giải:
a) P(x) = 2x³ - 3x + x⁵ - 4x³ + 4x - x⁵ + x² - 2
= -2x³ + x² + x - 2
Q(x) = x³ - 2x² + 3x + 1 + 2x²
= x³ + 3x + 1
Sắp xếp theo thứ tự giảm dần của biến là:
P(x) = -2x³ + x² + x - 2
Q(x) = x³ + 3x + 1
b) P(x) + Q(x) = -2x³ + x² + x - 2 + x³ + 3x + 1
= -x³ + x² + 4x - 1
P(x) - Q(x) = -2x³ + x² + x - 2 - x³ - 3x - 1
= -4x³ + x² - 2x - 3
a) P(x) = 2x3 - 2x - x2 - x3 + 3x + 2
=> P(x) = (2x3 - x3) + (-2x + 3x) - x2 + 2
=> P(x) = x3 + x - x2 + 2
Sắp xếp : P(x) = x3 - x2 + x + 2
Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1
=> Q(x) = (-4x3 + 3x3) + (5x2 - 4x2) + (-3x + 4x) + 1
=> Q(x) = -x3 + x2 + x + 1
Sắp xếp : Q(x) = -x3 + x2 + x + 1
b) H(x) = P(x) + Q(x)
=> H(x) = (x3 + x - x2 + 2) + (-x3 + x2 + x + 1)
=> H(x) = x3 + x - x2 + 2 - x3 + x2 +x + 1
=> H(x) = (x3 - x3) + (x + x) + (-x2 + x2) + (2 + 1)
=> H(x) = 2x + 3
K(x) = P(x) - Q(x)
=> K(x) = (x3 + x - x2 + 2) - (-x3 + x2 + x + 1)
=> K(x) = x3 + x - x2 + 2 + x3 - x2 - x - 1
=> K(x) = (x3 + x3) + (x - x) + (-x2 - x2) + (2 - 1)
=> K(x) = 2x3 - 2x2 + 1
c) Q(2) = -23 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1( m k bt (-2)3 hay -23 nx nên thông cảm))
P(-1) = (-1)3 - (-1)2 + (-1) + 2 = -1 - 1 - 1 + 2 = -1
d) Để H(x) có nghiệm => 2x + 3 = 0 => 2x = -3 => \(x=-\frac{3}{2}\)
Vậy x = -3/2 là nghiệm của đa thức H(x)
P/s : K chắc :))
a) Mình làm tắt
P(x) = x3 - x2 + x + 2
Q(x) = -x3 + x2 + x + 1
b) H(x) = P(x) + Q(x)
= x3 - x2 + x + 2 - x3 + x2 + x + 1
= 2x + 3
K(x) = P(x) - Q(x)
= x3 - x2 + x + 2 - ( -x3 + x2 + x + 1 )
= x3 - x2 + x + 2 + x3 - x2 - x - 1
= 2x3 - 2x2 + 1
c) Q(2) = -(2)3 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1
P(-1) = 13 - 12 + 1 + 2 = 1 - 1 + 1 + 2 = 3
d) H(x) = 2x + 3
H(x) = 0 <=> 2x + 3 = 0
<=> 2x = -3
<=> = -3/2
Vậy nghiệm của H(x) = -3/2