K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2019

\(B=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+5\left(\sqrt{x}+1\right)+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(B=\frac{x-\sqrt{x}+3\sqrt{x}-3+5\sqrt{x}+5+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(B=\frac{x+7\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+6}{\sqrt{x}-1}\)

b/ \(C=\left(\frac{\sqrt{x}-1}{\sqrt{x}-5}.\frac{\sqrt{x}+6}{\sqrt{x}-1}\right).\frac{\sqrt{x}-5}{\sqrt{x}}\)

\(C=\frac{\sqrt{x}+6}{\sqrt{x}-5}.\frac{\sqrt{x}-5}{\sqrt{x}}=\frac{\sqrt{x}+6}{\sqrt{x}}=1+\frac{6}{\sqrt{x}}\)

Cai này thì so sánh \(\frac{6}{\sqrt{x}}\) vs 2

Nếu0< x<9\(\Rightarrow\frac{6}{\sqrt{x}}< 2\)

Nếu x=9\(\Rightarrow\frac{6}{\sqrt{x}}=2\)

Nếu x>9\(\Rightarrow\frac{6}{\sqrt{x}}>2\)

16 tháng 6 2019

bài tập nâng cao thì 3=1+2

Mà vế kia cx có 1 thì so sánh 2 cái còn lại chứ!

Bài 1 : 

a )\(A=\frac{3-\sqrt{3}}{\sqrt{3}-1}+\frac{\sqrt{35}-\sqrt{15}}{\sqrt{5}}-\sqrt{28}\)

\(A=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{5}}-\sqrt{28}\)

\(A=\sqrt{3}+\sqrt{7}-\sqrt{3}-\sqrt{28}\)

\(A=\sqrt{7}-\sqrt{28}\)

\(A=\sqrt{7}-2\sqrt{7}=-\sqrt{7}\)

Vậy \(A=-\sqrt{7}\)

b)\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\left(a,b>0;a\ne b\right)\)

\(B=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\)

\(B=\left(\sqrt{a}+\sqrt{b}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)

\(B=a-b\)

Vậy \(B=a-b\left(a,b>0;a\ne b\right)\)

_Minh ngụy_

Bài 2 :

a )\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\left(x>0\right)\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Vậy \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

b) \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)

Ta có : \(B>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)

Vì : \(\sqrt{x}\ge0\forall x\Rightarrow\)để \(B>O\)cần \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)( thỏa mãn \(x>0\))

Vậy \(x>1\)thì \(B>0\)

_Minh ngụy_

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
16 tháng 10 2020

1: Rút gọn biểu thức

a) Ta có: \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=5\cdot\frac{1}{\sqrt{5}}+\frac{1}{3}\cdot3\sqrt{5}+\left|2-\sqrt{5}\right|\)

\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-2\)(Vì \(2< \sqrt{5}\))

\(=3\sqrt{5}-2\)

b) Ta có: \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)

\(=\frac{\left(5+\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}+\frac{\left(5-\sqrt{5}\right)^2}{\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)}\)

\(=\frac{30+10\sqrt{5}+30-10\sqrt{5}}{25-5}\)

\(=\frac{60}{20}=3\)

2:

Sửa đề: \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

a) Ta có: \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

b) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4;\frac{14\pm6\sqrt{5}}{4}\right\}\end{matrix}\right.\)

Để \(A>\frac{1}{6}\) thì \(A-\frac{1}{6}>0\)

\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}-\frac{1}{6}>0\)

\(\Leftrightarrow\frac{2\sqrt{x}-4}{6\sqrt{x}}-\frac{\sqrt{x}}{6\sqrt{x}}>0\)

\(\Leftrightarrow\frac{\sqrt{x}-4}{6\sqrt{x}}>0\)

\(6\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}-4>0\)

\(\Leftrightarrow\sqrt{x}>4\)

hay x>16

Kết hợp ĐKXĐ, ta được: x>16

Vậy: Để \(A>\frac{1}{6}\)thì x>16

23 tháng 5 2021

Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé

bài 1: rút gọn biểu thức a) \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\) b)\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\left(\frac{1}{\sqrt{5}-\sqrt{2}}\right)\) c) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\) d) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\frac{5-\sqrt{5}}{\sqrt{5}}\) bài 2: giải phương trình c)\(\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\) bài 3 a)tìm điều kiện để căn thức bậc 2...
Đọc tiếp

bài 1: rút gọn biểu thức

a) \(\sqrt{48}-6\sqrt{\frac{1}{3}}+\frac{\sqrt{3}-3}{\sqrt{3}}\)

b)\(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\left(\frac{1}{\sqrt{5}-\sqrt{2}}\right)\)

c) \(\sqrt{7-4\sqrt{3}}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

d) \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\frac{5-\sqrt{5}}{\sqrt{5}}\)

bài 2: giải phương trình

c)\(\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)

bài 3 a)tìm điều kiện để căn thức bậc 2 có nghĩa \(\sqrt{\frac{-5}{2x+1}}\)

b) \(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}\)

bài 4 cho biểu thức Q= \(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}\) với x>0 và x khác 1

a) rút gọn Q b) tính giá trị của Q khi x= 9

bài 5 :cho biểu thức P= \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)

a) tìm điều kiện của x để biểu thức P xác định

b) rút gọn P

c) tìm giá trị của x để P< 0

1
10 tháng 10 2020

các bạn ơi giúp mình với khocroi

19 tháng 7 2018

\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)

\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)

\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)

\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)

19 tháng 7 2018

\(4,A=x+\sqrt{x}+1\)

\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)

Dấu "=" xảy ra khi :

\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)

Vậy Min A = 3/4 khi căn x = -1/2

9 tháng 10 2020

1.\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}=\frac{\left(5+\sqrt{5}\right)\left(5+\sqrt{5}\right)}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}+\frac{\left(5-\sqrt{5}\right)\left(5-\sqrt{5}\right)}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)

\(=\frac{25+10\sqrt{5}+5}{25-5}+\frac{25-10\sqrt{5}+5}{25-5}\)

\(=\frac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{20}\)

\(=\frac{60}{20}=3\)

2.

a) \(\sqrt{45x}-2\sqrt{20x}+2\sqrt{80x}=21\)

ĐK : x ≥ 0

<=> \(\sqrt{5x\cdot9}-2\sqrt{5x\cdot4}+2\sqrt{5x\cdot16}=21\)

<=> \(\sqrt{5x\cdot3^2}-2\sqrt{2^2\cdot5x}+2\sqrt{5x\cdot4^2}=21\)

<=> \(\left|3\right|\sqrt{5x}-2\cdot\left|2\right|\sqrt{5x}+2\cdot\left|4\right|\sqrt{5x}=21\)

<=> \(\sqrt{5x}\cdot\left(3-4+8\right)=21\)

<=> \(\sqrt{5x}\cdot7=21\)

<=> \(\sqrt{5x}=3\)

<=> \(5x=9\)

<=> \(x=\frac{9}{5}\left(tm\right)\)

9 tháng 10 2020

ơ đang làm lại bấm " Gửi trả lời " ._.

2b) \(\sqrt{x^2-10x+25}=4\)

<=> \(\sqrt{\left(x-5\right)^2}=4\)

<=> \(\left|x-5\right|=4\)

<=> \(\orbr{\begin{cases}x-5=4\\x-5=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}\)

3. \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right)\div\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

ĐK : \(\hept{\begin{cases}x>0\\x\ne1\\x\ne4\end{cases}}\)

\(=\left(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x-1}\right)}\right)\div\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\left(\frac{x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\frac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)