Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
Ta có hình vẽ:
x O y A B C D
a/ Xét tam giác OAD và tam giác OBC có:
OA = OB (GT)
\(\widehat{O}\): góc chung
OC = OD (GT)
Vậy tam giác OAD = tam giác OBC (c.g.c)
b/ Ta có: tam giác OAD = tam giác OBC (câu a)
=> \(\widehat{OAD}\)=\(\widehat{OBC}\) (2 góc tương ứng)
Mà \(\widehat{OAD}\)+\(\widehat{DAC}\) = 1800 (kề bù)
và \(\widehat{OBC}\)+\(\widehat{CBD}\) = 1800 (kề bù)
=> \(\widehat{CAD}\)=\(\widehat{CBD}\)(đpcm)
Xét tam giác OBM và tam giác OAM có:
OA=OB; góc BOM=góc AOM; OM chung
=> Tam giác OBM= tam giác OAM
=> MA=MB
a) Xét tg OBC và tg ODA
góc O chung
OB= OD ( giả thiết) (*)
OC= OA (giả thiết)
=> tg OBC= tg ODA ( C-G-C)
Suy ra : AD= BC (1)
góc ABE= góc EDC (2)
góc OCB= góc OAD (3)
b) Xét tg EAB và tg ECD: góc ABE= góc EDC ( do 2) (4)
góc BAE= góc ECD [kề bù với 2 góc OCB và OAD do (3) ] (5)
Mặt khác: A nằm giữa O, B ( OA<OB) => AB= OB - OA
C nằm giữa O, D ( OC<OD) => CD= OD - OC
Mà do (*) => AB= CD (6)
Từ (4), (5) và (6) suy ra: tg AEB= tg CED (G-C-G)
c) tg AEB= tg CED => AE= CE
mà OA= OC
OE chung của 2 tam giác
Suy ra tg OAE= tg OCE (C-C-C) (**) => góc AOE = góc COA
Do AD cắt BC(giả thiết) tại E nằm trong góc xOy => Tia OE nằm giữa 2 tia OB, OD (***)
Từ (**) và (***) suy ra: OE là tia phân giác của góc xOy.
Hết. Chúc bạn học tốt
a) Ot là tia phân giác của góc bẹt xOy
nên ˆtOx���^=ˆtOy���^=90o90�
Xét ΔAOC và ΔDOB có OA=OD(gt)
ˆAOC���^=ˆDOB���^=90o90�(cnt)
OC=OB(gt)
Do đó ΔAOC và ΔDOB (c.g.c)⇒AC=BD
Ta có ΔAOC và ΔDOB (cmt) ⇒ ^C1�1^=^B1�1^ và ^A1�1^=^D1�1^(góc tương ứng)
Mà ^A1�1^+^C1�1^=90o90� ( vì ˆAOC���^=90o90� )⇒^C1�1^+^D1�1^=90o90�
Gọi I là giao điểm của CA và BD . Xét ΔCID có ^C1�1^+^D1�1^=90o90�
⇒ˆCID���^=180o180�-(^C1�1^+^D1�1^)=90o90�
b)M là trung điểm của AC (gt)⇒MC=MA=AC2��2 tương tự ta có NB=ND=BD2��2 mà AC=BD(cmt)⇒MC=MA=NB=ND
Xét ΔOMC và ΔONB có MC=NB(cmt)
^C1�1^=^B1�1^(cmt)
OC=OB(gt)
Do đó ΔOMC=ΔONB(c.g.c)⇒OM=ON
c) Ta có ΔOMC=ΔONB (cmt)⇒^O1�1^=^O3�3^ (góc tương ứng )
mà ^O1�1^+^O2�2^=ˆCOt���^=90o90� (gt)⇒^O2�2^+^O3�3^=90o90�hayˆMON���^=90o90�
Gọi H là trung điểm của đoạn MN . Xét ΔMHO và ΔNHO có OH : cạnh chung , MH=NH(gt);OM=ON(cmt). Do đó ΔMHO=ΔNHO(c.c.c)⇒ˆOMH���^=ˆONH���^(góc tương ứng )
Xét ΔMON có ˆMON���^=90o90� (cmt)ˆOMH���^=ˆONH���^
Mà ˆOMH���^+ˆONH���^= 180o180�-ˆMON���^= 180o180�-90o90�=90o90�
⇒ˆOMN���^=ˆONM���^=45o45�
a, Ta có: OA + AB = OB
và OC + CD = OD
Mà OA = OC (gt) ; AB = CD (gt)
=> OB = OD
=> △OBD cân tại O
b, Vì ON là tia phân giác của xOy => xON = NOy = xOy : 2 = 65o : 2 = 32,5o
Cách 1: Xét △OAM và △OCM
Có: OA = OC (gt)
AOM = COM (cmt)
OM là cạnh chung
=> △OAM = △OCM (c.g.c)
=> AMO = CMO (2 góc tương ứng)
Mà AMO + CMO = 180o (2 góc kề bù)
=> AMO = CMO = 180o : 2 = 90o
Xét △BON và △DON
Có: OB = OD (cmt)
BON = DON (cmt)
ON là cạnh chung
=> △BON = △DON (c.g.c)
=> BNO = DNO (2 góc tương ứng)
Mà BNO + DNO = 180o (2 góc kề bù)
=> BNO = DNO = 180o : 2 = 90o
Cách 2: Vì OA = OC (gt) => △AOC cân tại O => CAO = (180o - AOC) : 2 = (180o - 65o) : 2 = 115o : 2 = 57,5o
Xét △OAM có: MAO + AMO + MOA = 180o (tổng 3 góc trong tam giác)
=> 57,5o + AMO + 32,5o = 180o
=> AMO = 180o - 32,5o - 57,5o
=> AMO = 90o
Vì △OBD cân tại O => DBO = (180o - BOD) : 2 = (180o - 65o) : 2 = 115o : 2 = 57,5o
Xét △BON có: NBO + BNO + BON = 180o (tổng 3 góc trong tam giác)
=> 57,5o + BNO + 32,5o = 180o
=> BNO = 180o - 32,5o - 57,5o
=> BNO = 90o
c, Vì AMO = 90o => AM ⊥ ON hay AC ⊥ ON (M AC) (1)
Vì BNO = 90o => BN ⊥ ON hay BD ⊥ ON (N BD) (2)
=> Từ (1) và (2) => AC // BD (dhnb)