K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

Suy ra: AD=BC

b: Xét ΔACD và ΔBDC có 

AC=BD

\(\widehat{ACD}=\widehat{BDC}\)

CD chung

Do đó: ΔACD=ΔBDC

Suy ra: \(\widehat{EAC}=\widehat{EBD}\)

Xét ΔEAC và ΔEBD  có

\(\widehat{EAC}=\widehat{EBD}\)

AC=BD

\(\widehat{ECA}=\widehat{EDB}\)

Do đó: ΔEAC=ΔEBD

1 tháng 1 2022

Xét ΔOBCΔOBC và ΔOADΔOAD có:

OB=OAOB=OA (gt)

ˆOO^ chung

OC=OAOC=OA (gt)

⇒ΔOBC=ΔOAD⇒ΔOBC=ΔOAD (c.g.c)

⇒BC=AD⇒BC=AD (hai cạnh tương ứng)

 

b) Xét ΔEBDΔEBD có:

ˆE1+ˆB1+ˆD1=180o⇒ˆB1=180o−ˆE1−ˆD1E1^+B1^+D1^=180o⇒B1^=180o−E1^−D1^ (1)

Xét ΔEACΔEAC có:

ˆE2+ˆA1+ˆC1=180o⇒ˆA1=180o−ˆE2−ˆC1E2^+A1^+C1^=180o⇒A1^=180o−E2^−C1^ (2)

mà ˆE1=ˆE2E1^=E2^ (đối đỉnh) (3)

ˆD1=ˆC1D1^=C1^ (do ΔOBC=ΔOADΔOBC=ΔOAD hai góc tương ứng) ($)

Từ 4 điều trên suy ra ˆB1=ˆA1B1^=A1^

Ta có: BD=OD−OB=OC−OA=ACBD=OD−OB=OC−OA=AC

Xét ΔEACΔEAC và ΔEBDΔEBD có:

ˆD1=ˆC1D1^=C1^

BD=ACBD=AC (cmt)

ˆB1=ˆA1B1^=A1^

⇒ΔEAC=ΔEBD⇒ΔEAC=ΔEBD (g.c.g)

 

c) ΔEAC=ΔEBD⇒EC=EDΔEAC=ΔEBD⇒EC=ED (hai cạnh tương ứng)

⇒⇒

Xét ΔOEDΔOED và ΔOECΔOEC có:

OD=OCOD=OC (gt)

ˆD1=ˆC1D1^=C1^

DE=CE (cmt)

⇒ΔOED=ΔOEC⇒ΔOED=ΔOEC (c.g.c)

⇒ˆDOE=ˆCOE⇒DOE^=COE^ (hai góc tương ứng)

⇒OE⇒OE là tiếp tuyến của ˆOO^

image 
1 tháng 1 2022

oki nha

13 tháng 9 2017

Em đây

13 tháng 9 2017

ai đây ạ? nếu bạn k giải đc thì đừng cmt lung tung nhaa

a.OC=OA+AC

OD=OB+BD
mà OA=OB(gt);AC=BD(gt)

=>OC=OD

Xét tam giác OAD và tam giác OBC có:OA=OB(gt)

                                                                góc O chung

                                                                OD=OC(cmt)

                                                      =>tam giác OAD=tam giác OBC(c.g.c)=>AD=BC(hai cạnh tương ứng)(đpcm)

b.tam giác OAD=tam giác OBC(câu a)=>góc OAD=góc OBC(hai góc tương ứng)

                                                                 góc ODA=góc OCB(hai góc tương ứng) hay góc BDE=góc ACE

góc OAD+góc DAC=180 độ (hai góc kề bù)

góc OBC+góc CBD=180 độ (hai góc kề bù)

=>góc DAC=góc CBD hay góc EAC=góc EBD

Xét tam giác EAC và tam giác EBD có:

Góc ACE=góc BDE(cmt)

AC=BD(gt)

góc EAC=góc EBD(cmt)

=>tam giác EAC=tam giác EBD(g.c.g)(đpcm)

c.tam giác EAC=tam giác EBD(câu b)=>EC=ED(hai cạnh tương ứng)

Xét tam giác OEC và tam giác OED có:

OC=OD(câu a)

EC=ED(cmt)

OE chung

=>tam giác OEC=tam giác OED(c.c.c)

=>góc EOC=góc EOD(hai góc tương ứng)=>OE là phân giác góc COD hay OE là phân giác góc xOy (đpcm)

1 tháng 12 2016

làm hộ cái

15 tháng 12 2016

a/   OA=OB,AC=BD suy ra OA + AC= OB+BD hay OC=OD

Xét tg COB  và   DOA có OC= OD; góc COB chung ;OB=OA suy ra 2 tg này = nhau (c.g.c)

=> AD=BC (đpcm)

b/ vì tgCOB=tg DOA nên góc OCB=gócADO;góc CBO=góc OAD

Có gócOCB=góc OAD=>180- gócOCB=1800 - góc OAD hay gócEBD=góc EAC

Xét tg ACE và tg BDEcó AC =BD, góc EAC =góc EBD, góc ACE =góc EBD => 2 tg này =nhau (g.c.g) (đpcm)

c/vì tgEAC= tg EBDnên ec= ed

xét tg coe và tg doe có oe chung,oc=od,ec=ed => 2 tg này = nhau (c.c.c)

=> góc coe = góc eod mà góc coe +góc eod = góc cod => góc coe= góc eod = 1/2 góc cod => oe là phân giác góc cod hay là góc xoy(đpcm)

xét tam giác cod cân tại o(vì oc=od)  có oe là phân giác suy ra oe cũng là đường cao tam giác này theo tính chất tam giác cân =>oe vuông góc với cd

Lưu ý tg là tam giác nhé, phần cuối bạn không viết hoa đc nên thông cảm nhé

16 tháng 12 2016

O y A B D C x

16 tháng 12 2016

Hình vẽ trên òn đây là bài làm:

a) Ta có: OC=OA+AC

OD=OB+BD

Mà OA=OB và AC=BD (gt)

=>OC=OD

Xét Δ OAD và Δ OBC có:

OA=OB (gt)

\(\widehat{O}\) góc chung

OC=OD (cmt)

=> Δ OAD=Δ OBC (c.g.c)

=> AD=BC (2 cạnh tương ứng)

Δ OAD=Δ OBC (cmt)

=> \(\widehat{D}=\widehat{C}\)\(\widehat{A_1}=\widehat{B_1}\) (2 góc tương ứng)

\(\widehat{A_1}+\widehat{A_2}=\widehat{B_1}+\widehat{B_2}\)= 1800 (kề bù)

=> \(\widehat{A_2}=\widehat{B_2}\)

Δ EAC và Δ EBD có:

\(\widehat{C}=\widehat{D}\) (cmt)

AC=BD (gt)

\(\widehat{A_2}=\widehat{B_2}\) (cmt)

=> Δ EAC= ΔEBD (g.c.g)

c) Δ EAC=ΔEBD (cmt)

=> EA=EB (2 cạnh tương ứng)

ΔOBE và Δ OAE có:

OB=OA (gt)

\(\widehat{B_1}=\widehat{A_1}\) (cmt)

EA=EB (cmt)

=>Δ OBE=Δ OAE (c.g.c)

=> \(\widehat{O_1}=\widehat{O_2}\) (2 góc tương ứng)

Vậy OE là phân giác \(\widehat{xOy}\).

 

 

Hình tự vẽ nha

a)Có: OC=OA+AC

OD=OB+BD

Mà : OA=OA(gt); AC=BD(gt)

=> OC=OD

Xét ΔOBC và ΔOAD có:

OC=OD(cmt)

\(\widehat{O}\) chung

OB=OA(gt)

=> ΔOBC=ΔOAD(c.g.c)

=> BC=AD

b)Vì: ΔOBC =ΔOAD(cmt)

 \(\Rightarrow\widehat{OCB}=\widehat{ODA},\widehat{OBC}=\widehat{OAD}\)( cặp góc tượng ứng)

Có:\(\widehat{OAD}+\widehat{DAC}=180^o\)

\(\widehat{OBC}+\widehat{CBD}=180^o\)

Mà:\(\widehat{OBC}=\widehat{OAD}\left(cmt\right)\)

\(\Rightarrow\widehat{DAC}=\widehat{CBD}\)

Xét ΔEAC và ΔEBD có

\(\widehat{ECA}=\widehat{EDB}\left(cmt\right)\)

AC=BD(gt)

\(\widehat{EAC}=\widehat{EBD}\left(cmt\right)\)

=> ΔEAC=ΔEBD(g.c.g)

c) Vì: ΔEAC=ΔEBD(cmt)

=> EC=ED

Xét ΔOEC và ΔOED có:

OC=OD(cmt)

\(\widehat{OCE}=\widehat{ODE}\left(cmt\right)\)

EC=ED(cmt)

=> ΔOEC=ΔOED(c.g.c)

 \(\Rightarrow\widehat{EOC}=\widehat{EOD}\)

=> OE là tia pg của \(\widehat{xOy}\)