K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2016

làm hộ cái

15 tháng 12 2016

a/   OA=OB,AC=BD suy ra OA + AC= OB+BD hay OC=OD

Xét tg COB  và   DOA có OC= OD; góc COB chung ;OB=OA suy ra 2 tg này = nhau (c.g.c)

=> AD=BC (đpcm)

b/ vì tgCOB=tg DOA nên góc OCB=gócADO;góc CBO=góc OAD

Có gócOCB=góc OAD=>180- gócOCB=1800 - góc OAD hay gócEBD=góc EAC

Xét tg ACE và tg BDEcó AC =BD, góc EAC =góc EBD, góc ACE =góc EBD => 2 tg này =nhau (g.c.g) (đpcm)

c/vì tgEAC= tg EBDnên ec= ed

xét tg coe và tg doe có oe chung,oc=od,ec=ed => 2 tg này = nhau (c.c.c)

=> góc coe = góc eod mà góc coe +góc eod = góc cod => góc coe= góc eod = 1/2 góc cod => oe là phân giác góc cod hay là góc xoy(đpcm)

xét tam giác cod cân tại o(vì oc=od)  có oe là phân giác suy ra oe cũng là đường cao tam giác này theo tính chất tam giác cân =>oe vuông góc với cd

Lưu ý tg là tam giác nhé, phần cuối bạn không viết hoa đc nên thông cảm nhé

1 tháng 1 2022

Xét ΔOBCΔOBC và ΔOADΔOAD có:

OB=OAOB=OA (gt)

ˆOO^ chung

OC=OAOC=OA (gt)

⇒ΔOBC=ΔOAD⇒ΔOBC=ΔOAD (c.g.c)

⇒BC=AD⇒BC=AD (hai cạnh tương ứng)

 

b) Xét ΔEBDΔEBD có:

ˆE1+ˆB1+ˆD1=180o⇒ˆB1=180o−ˆE1−ˆD1E1^+B1^+D1^=180o⇒B1^=180o−E1^−D1^ (1)

Xét ΔEACΔEAC có:

ˆE2+ˆA1+ˆC1=180o⇒ˆA1=180o−ˆE2−ˆC1E2^+A1^+C1^=180o⇒A1^=180o−E2^−C1^ (2)

mà ˆE1=ˆE2E1^=E2^ (đối đỉnh) (3)

ˆD1=ˆC1D1^=C1^ (do ΔOBC=ΔOADΔOBC=ΔOAD hai góc tương ứng) ($)

Từ 4 điều trên suy ra ˆB1=ˆA1B1^=A1^

Ta có: BD=OD−OB=OC−OA=ACBD=OD−OB=OC−OA=AC

Xét ΔEACΔEAC và ΔEBDΔEBD có:

ˆD1=ˆC1D1^=C1^

BD=ACBD=AC (cmt)

ˆB1=ˆA1B1^=A1^

⇒ΔEAC=ΔEBD⇒ΔEAC=ΔEBD (g.c.g)

 

c) ΔEAC=ΔEBD⇒EC=EDΔEAC=ΔEBD⇒EC=ED (hai cạnh tương ứng)

⇒⇒

Xét ΔOEDΔOED và ΔOECΔOEC có:

OD=OCOD=OC (gt)

ˆD1=ˆC1D1^=C1^

DE=CE (cmt)

⇒ΔOED=ΔOEC⇒ΔOED=ΔOEC (c.g.c)

⇒ˆDOE=ˆCOE⇒DOE^=COE^ (hai góc tương ứng)

⇒OE⇒OE là tiếp tuyến của ˆOO^

image 
1 tháng 1 2022

oki nha

22 tháng 11 2019

x O y y A C B D E

lưu ý:^ là dấu góc nhé

a)Có: OC=OA+AC

OD=OB+BD

Mà : OA=OA(gt); AC=BD(gt)

=> OC=OD

Xét ΔOBC và ΔOAD có:

OC=OD(cmt)

\(\widehat{O}\) : góc chung

OB=OA(gt)

=> ΔOBC=ΔOAD(c.g.c)

=> BC=AD

b)Vì: ΔOBC =ΔOAD(cmt)

=> \(\widehat{\text{OCB}}\)=\(\widehat{ODA}\);OBCˆ=OADˆOCB^=ODA^;OBC^=OAD^ ( cặp góc tượng ứng)

Có: OADˆ+DACˆ=180 độ ;OAD^+DAC^=180 đọ

OBCˆ+CBDˆ=180độ ;OBC^+CBD^=180 độ

Mà: OBCˆ=OADˆ(cmt)OBC^=OAD^(cmt)

=> DACˆ=CBDˆDAC^=CBD^

Xét ΔEAC và ΔEBD có

ECAˆ=EDBˆ(cmt)ECA^=EDB^(cmt)

AC=BD(gt)

EACˆ=EBDˆ(cmt)EAC^=EBD^(cmt)

=> ΔEAC=ΔEBD(g.c.g)

c) Vì: ΔEAC=ΔEBD(cmt)

=> EC=ED

Xét ΔOEC và ΔOED có:

OC=OD(cmt)

OCEˆ=ODEˆ(cmt)OCE^=ODE^(cmt)

EC=ED(cmt)

=> ΔOEC=ΔOED(c.g.c)

=> EOCˆ=EODˆEOC^=EOD^

=> OE là tia pg của xOyˆxOy^

Xét ΔCOE và ΔDOE có:

OC=OD(cmt)

COEˆ=DOEˆ(cmt)COE^=DOE^(cmt)

OE: cạnh chung

=> ΔCOE=ΔDOE(c.g.c)

=> OECˆ=OEDˆ=90độ

18 tháng 12 2016

O A C B D E

a)Có: OC=OA+AC

OD=OB+BD

Mà : OA=OA(gt); AC=BD(gt)

=> OC=OD

Xét ΔOBC và ΔOAD có:

OC=OD(cmt)

\(\widehat{O}\) : góc chung

OB=OA(gt)

=> ΔOBC=ΔOAD(c.g.c)

=> BC=AD

b)Vì: ΔOBC =ΔOAD(cmt)

=> \(\widehat{OCB}=\widehat{ODA};\widehat{OBC}=\widehat{OAD}\) ( cặp góc tượng ứng)

Có: \(\widehat{OAD}+\widehat{DAC}=180^o\)

\(\widehat{OBC}+\widehat{CBD}=180^o\)

Mà: \(\widehat{OBC}=\widehat{OAD}\left(cmt\right)\)

=> \(\widehat{DAC}=\widehat{CBD}\)

Xét ΔEAC và ΔEBD có

\(\widehat{ECA}=\widehat{EDB}\left(cmt\right)\)

AC=BD(gt)

\(\widehat{EAC}=\widehat{EBD}\left(cmt\right)\)

=> ΔEAC=ΔEBD(g.c.g)

c) Vì: ΔEAC=ΔEBD(cmt)

=> EC=ED

Xét ΔOEC và ΔOED có:

OC=OD(cmt)

\(\widehat{OCE}=\widehat{ODE}\left(cmt\right)\)

EC=ED(cmt)

=> ΔOEC=ΔOED(c.g.c)

=> \(\widehat{EOC}=\widehat{EOD}\)

=> OE là tia pg của \(\widehat{xOy}\)

Xét ΔCOE và ΔDOE có:

OC=OD(cmt)

\(\widehat{COE}=\widehat{DOE}\left(cmt\right)\)

OE: cạnh chung

=> ΔCOE=ΔDOE(c.g.c)

=> \(\widehat{OEC}=\widehat{OED}=90^o\)

18 tháng 12 2016

VỘI VÀNG QUÁ uk thánh soi

16 tháng 12 2016

O y A B D C x

16 tháng 12 2016

Hình vẽ trên òn đây là bài làm:

a) Ta có: OC=OA+AC

OD=OB+BD

Mà OA=OB và AC=BD (gt)

=>OC=OD

Xét Δ OAD và Δ OBC có:

OA=OB (gt)

\(\widehat{O}\) góc chung

OC=OD (cmt)

=> Δ OAD=Δ OBC (c.g.c)

=> AD=BC (2 cạnh tương ứng)

Δ OAD=Δ OBC (cmt)

=> \(\widehat{D}=\widehat{C}\)\(\widehat{A_1}=\widehat{B_1}\) (2 góc tương ứng)

\(\widehat{A_1}+\widehat{A_2}=\widehat{B_1}+\widehat{B_2}\)= 1800 (kề bù)

=> \(\widehat{A_2}=\widehat{B_2}\)

Δ EAC và Δ EBD có:

\(\widehat{C}=\widehat{D}\) (cmt)

AC=BD (gt)

\(\widehat{A_2}=\widehat{B_2}\) (cmt)

=> Δ EAC= ΔEBD (g.c.g)

c) Δ EAC=ΔEBD (cmt)

=> EA=EB (2 cạnh tương ứng)

ΔOBE và Δ OAE có:

OB=OA (gt)

\(\widehat{B_1}=\widehat{A_1}\) (cmt)

EA=EB (cmt)

=>Δ OBE=Δ OAE (c.g.c)

=> \(\widehat{O_1}=\widehat{O_2}\) (2 góc tương ứng)

Vậy OE là phân giác \(\widehat{xOy}\).

 

 

Hình tự vẽ nha

a)Có: OC=OA+AC

OD=OB+BD

Mà : OA=OA(gt); AC=BD(gt)

=> OC=OD

Xét ΔOBC và ΔOAD có:

OC=OD(cmt)

\(\widehat{O}\) chung

OB=OA(gt)

=> ΔOBC=ΔOAD(c.g.c)

=> BC=AD

b)Vì: ΔOBC =ΔOAD(cmt)

 \(\Rightarrow\widehat{OCB}=\widehat{ODA},\widehat{OBC}=\widehat{OAD}\)( cặp góc tượng ứng)

Có:\(\widehat{OAD}+\widehat{DAC}=180^o\)

\(\widehat{OBC}+\widehat{CBD}=180^o\)

Mà:\(\widehat{OBC}=\widehat{OAD}\left(cmt\right)\)

\(\Rightarrow\widehat{DAC}=\widehat{CBD}\)

Xét ΔEAC và ΔEBD có

\(\widehat{ECA}=\widehat{EDB}\left(cmt\right)\)

AC=BD(gt)

\(\widehat{EAC}=\widehat{EBD}\left(cmt\right)\)

=> ΔEAC=ΔEBD(g.c.g)

c) Vì: ΔEAC=ΔEBD(cmt)

=> EC=ED

Xét ΔOEC và ΔOED có:

OC=OD(cmt)

\(\widehat{OCE}=\widehat{ODE}\left(cmt\right)\)

EC=ED(cmt)

=> ΔOEC=ΔOED(c.g.c)

 \(\Rightarrow\widehat{EOC}=\widehat{EOD}\)

=> OE là tia pg của \(\widehat{xOy}\)