Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
x99 + x88 + x77 + ..... + x11 + 1
= (x99 + x88 + x77 + ..... + x11) + 1
= [(x9)11 + (x8)11 + (x7)11 + .... + x11 ]+ 1
Xét từng giá trị trong ngoặc vuông , ta thấy
(x9)11 chia hết cho x9
(x8)11 chia hết cho x8
.........
x11 chia hết cho x
1 chia hết cho 1
=> x99 + x88 + x77 + ..... + x11 + 1 chia hết cho x9 + x8 + x7 + ....... + x + 1
Phần a)
Sử dụng bổ đề \(x^{mn}-1\vdots x^m-1\) với mọi \(m,n \in\mathbb{N}\)
Chứng minh bổ đề:
Thật vậy, theo hằng đẳng thức đáng nhớ:
\(x^{mn}-1=(x^m)^n-1^n=(x^m-1)[(x^m)^{n-1}+(x^m)^{n-2}+...+x^m+1]\vdots x^m-1\)
Bổ đề đc chứng minh.
-----------------------------------
Ta có:
\(x^{400}+x^{200}+1=x^{396}.x^4+x^{198}.x^2+1\)
\(=x^4(x^{396}-1)+x^2(x^{198}-1)+(x^4+x^2+1)\)
Áp dụng bổ đề trên vào bài toán kết hợp với \(x^6-1=(x^2-1)(x^4+x^2+1)\vdots x^4+x^2+1\) ta suy ra:
\(x^{396}-1=x^{6.66}-1\vdots x^6-1\vdots x^4+x^2+1\)
\(x^{198}-1=x^{6.33}-1\vdots x^6-1\vdots x^4+x^2+1\)
\(x^4+x^2+1\vdots x^4+x^2+1\) (hiển nhiên)
Do đó: \(x^{400}+x^{200}+1\vdots x^4+x^2+1\)
(đpcm)
Phần b)
\(F(x)=x^{1970}+x^{1930}+x^{1890}=x^{1890}(x^{80}+x^{40}+1)\)
Thấy rằng:
\(x^{80}+x^{40}+1=(x^{40}+1)^2-x^{40}=(x^{40}+1)^2-(x^{20})^2\)
\(=(x^{40}+1-x^{20})(x^{40}+1+x^{20})\)
Mà: \(x^{40}+1+x^{20}=(x^{20}+1)^2-x^{20}=(x^{20}+1)^2-(x^{10})^2\)
\(=(x^{20}+1-x^{10})(x^{20}+1+x^{10})\vdots x^{20}+x^{10}+1\)
Do đó:
\(x^{80}+x^{40}+1\vdots x^{20}+x^{10}+1\)
Lời giải:
\(f(x)=1+x+x^2+x^3+...+x^{27}+x^{28}+x^{29}\)
\(=(1+x+x^2+x^3+...+x^9)+(x^{10}+x^{11}+...+x^{19})+(x^{20}+x^{21}+...+x^{29})\)
\(=(1+x+x^2+...+x^9)+x^{10}(1+x+x^2+...+x^9)+x^{20}(1+x+x^2+...+x^9)\)
\(=(1+x+x^2+..+x^9)(1+x^{10}+x^{20})=g(x)(1+x^{10}+x^{20})\)
Suy ra $f(x)$ chia hết cho $g(x)$
Ta có đpcm.
đề sai 100%
ko sai đâu bn ơi
nhiều người đề cx như vậy mà
bn lấy chứng cứ đâu mà bảo sai
có khi bn lm sai nên mới bảo đề sai ý
bn thử lm cho mk xem cái