K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

Ta có  : f(0) = a.02 + b.0 + c = c\(\in\)Z

f(1) = a.12 + b.1 + c = a + b + c \(\in\)Z

Nên a + b \(\in\)Z

f(2) = a.22 + b.2 + c = 4a + 2b + c \(\in\)Z

mà 4a + 2b + c = 2a + 2a + 2b + c = 2a + 2(a+b) + c

Nên 2a \(\in\)Z

27 tháng 11 2021

\(2,\\ PT\Leftrightarrow6x^2+9y^2-\left(x^2+y^2\right)=20412\\ \text{Mà }20412⋮3;6x^2+9y^2⋮3\\ \Leftrightarrow x^2+y^2⋮3\Leftrightarrow x^2⋮3;y^2⋮3\Leftrightarrow x⋮3;y⋮3\)

Đặt \(\left\{{}\begin{matrix}x=3a\\y=3b\end{matrix}\right.\left(a,b\in Z\right)\Leftrightarrow5\left(3a\right)^2+8\left(3b\right)^2=20412\)

\(\Leftrightarrow9\left(5a^2+8b^2\right)=20412\\ \Leftrightarrow5a^2+8b^2=2268\)

Mà \(2268⋮3\Leftrightarrow5a^2+8b^2⋮3\Leftrightarrow a^2⋮3;b^2⋮3\Leftrightarrow a⋮3;b⋮3\)

Đặt \(\left\{{}\begin{matrix}a=3c\\b=3d\end{matrix}\right.\left(c,d\in Z\right)\Leftrightarrow9\left(5c^2+8d^2\right)=2268\Leftrightarrow5c^2+8d^2=252\)

Mà \(252⋮3\Leftrightarrow5c^2+8d^2⋮3\Leftrightarrow c^2⋮3;d^2⋮3\Leftrightarrow c⋮3;d⋮3\)

Đặt \(\left\{{}\begin{matrix}c=3k\\d=3q\end{matrix}\right.\left(k,q\in Z\right)\Leftrightarrow9\left(5k^2+8q^2\right)=252\Leftrightarrow5k^2+8q^2=28\)

\(\Leftrightarrow5k^2=28-8q^2\ge0\Leftrightarrow q^2\le\dfrac{28}{8}=3,5\\ \text{Mà }q\in Z\\ \Leftrightarrow-3\le q^2\le3\Leftrightarrow-1\le q\le1\)

\(\forall q=0\Leftrightarrow k^2=\dfrac{28}{5}\left(ktm\right)\\ \forall q=\pm1\Leftrightarrow k=\pm2\\ \Leftrightarrow\left(c;d\right)=\left(6;3\right);\left(-6;-3\right);\left(-6;3\right);\left(6;-3\right)\\ \Leftrightarrow\left(a;b\right)=\left(18;9\right)\left(-18;-9\right);\left(-18;9\right);\left(18;-9\right)\\ \Leftrightarrow\left(x;y\right)=\left(54;27\right);\left(-54;-27\right);\left(54;-27\right);\left(-54;27\right)\)

24 tháng 11 2020

\(\text{Giả sử ko tồn tại số nào lớn hơn hoặc bằng }\frac{1}{2}\)

\(|\text{ }f\left(0\right)|=|\text{ c}|;|f\left(1\right)|=|a+b+c|;|f\left(-1\right)|=|a-b+c|\)\(\text{khi đó:}-\frac{1}{2}\le c\le\frac{1}{2};-\frac{1}{2}\le a+b+c\le\frac{1}{2};\frac{-1}{2}\le a-b+c\le\frac{1}{2}\)

đến đây đề sai ta chọn a=b=0; c=1/4

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Đề sai. Bạn cho $a=-1; b=2021; c=2$ thì để có đpcm thì pt:

$-x^2+2021x+2=P(2021)P(2022)=-4020$ có nghiệm nguyên.

Mà dễ thấy pt này không có nghiệm nguyên nên đề sai.