Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
x+x3+x9+x27+x81=(x2−1)P(x)+ax+bx+x3+x9+x27+x81=(x2−1)P(x)+ax+b (1)
ax+bax+b là dư
thay x=1x=1 vàx=−1x=−1 lần lượt vào (1) ta tìm được a,ba,b
x^9+x^5+1 x^3-x x^6+x^4+2x^2+2 x^9-x^7 x^7+x^5+1 x^7-x^5 2x^5+1 2x^5-2x^3 2x^3+1 2x^3-2x 2x+1
Đa thức 2x + 1 có bậc nhỏ hơn bậc của đa thức x3 - x nên ta không thể thực hiện phép chia nữa
Vậy đa thức f(x) = x9 + x5 +1 cho đa thức g(x) = x3 - x được x6 + x4 + 2x2 + 2 dư 2x + 1
ko sai đâu bn ơi
nhiều người đề cx như vậy mà
bn lấy chứng cứ đâu mà bảo sai
có khi bn lm sai nên mới bảo đề sai ý
bn thử lm cho mk xem cái
Đa thức \(g\left(x\right)=x^2+x-6\)có nghiệm \(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Để đa thức f(x) = x3+ax2-bx+12 chia hết cho g(x) = x2+x-6 thì 3 và -2 cũng là hai nghiệm của đa thức x3+ax2-bx+12
Nếu x = 3 thì \(f\left(3\right)=27+9a-3b+12=0\)
\(\Leftrightarrow9a-3b=-39\Leftrightarrow3a-b=-13\)(1)
Nếu x = -2 thì \(f\left(-2\right)=-8+4a+2b+12=0\)
\(\Leftrightarrow4a+2b=-4\Leftrightarrow2a+b=-2\)(2)
Lấy (1) + (2), ta được: \(5a=-15\Leftrightarrow a=-3\)
\(\Rightarrow b=-2+3.2=4\)
Vậy a= -3; b = 4
x^2+1 x^3+ax^2+bx-2 x+a x^3 +x ax^2+(b-1)x-2 ax^2 +a (b-1)x -(a+2)
Để f(x) = x3+ax2+bx-2 chia hết cho g(x) =x2+1 thì \(\left(b-1\right)x-\left(a+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}b-1=0\\a+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=-2\end{cases}}\)
Gọi thương là Q(x)
Gọi R là ax+b
\(\Rightarrow F\left(x\right)=Q\left(x\right).\left(x^2-1\right)+ax+b\)
Ta có hệ phương trình .
\(\left\{{}\begin{matrix}P\left(1\right)=a+b=6\\P\left(-1\right)=-a+b=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=5\\b=1\end{matrix}\right.\)
Vậy đa thức dư là : 5x+1