Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC và AO là phân giác của góc BAC
mà OB=OC
nên OA là trung trực của BC
Xét ΔOBA vuông tại B có cos BOK=OB/OA=1/2
nên góc BOK=60 độ
mà OB=OK
nên ΔOKB đều
b: \(AB=AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
góc DOC=180-120=60 độ
=>góc EOC=30 độ
Xét ΔEOC vuông tại C có tan EOC=EC/CO
=>EC/R=tan 30
=>EC=căn 3/3*R
=>\(AE=R\sqrt{3}+R\cdot\dfrac{\sqrt{3}}{3}=\dfrac{4}{3}R\cdot\sqrt{3}\)
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
Xét ΔOBA vuông tại B có cos BOA=OB/OA=1/2
nên góc BOA=60 độ
Xét ΔOBK có OK=OB và góc BOK=60 độ
nên ΔOBK đều
b: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
góc DOC=180-120=60 độ
=>góc EOC=30 độ
Xét ΔOCE vuông tại C có tan EOC=EC/OC
=>EC/R=tan30
=>\(EC=R\cdot\dfrac{\sqrt{3}}{3}\)
\(AE=AC+CE=R\left(\dfrac{\sqrt{3}}{3}+\sqrt{3}\right)=\dfrac{4\sqrt{3}}{3}\cdot R\)