Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
M A C D E F N K O B
a.Ta có MC là tiếp tuyến của (O)
\(\Rightarrow MC\perp OC\)
Mà \(MK\perp KD\Rightarrow\widehat{MCO}=\widehat{MKD}=90^0\Rightarrow OCDK\) nội tiếp
b.Vì MC là tiếp tuyến của (O)
\(\Rightarrow\widehat{MCA}=\widehat{MBC}\Rightarrow\Delta MCA~\Delta MBC\left(g.g\right)\)
\(\Rightarrow\frac{MC}{MB}=\frac{MA}{MC}\Rightarrow MC^2=MA.MB\)
c . Vì MO∩(O)=AB \(\Rightarrow AB\) là đường kính của (O)
\(\Rightarrow AC\perp BC\Rightarrow\widehat{BCD}+\widehat{MCA}=90^0\Rightarrow\widehat{BCD}=90^0-\widehat{MCA}\)
Mà \(\widehat{MCA}=\widehat{MBC}\Rightarrow\widehat{MCD}=90^0-\widehat{ABN}=\widehat{BNK}=\widehat{CND}\)
\(\Rightarrow\Delta DCN\) cân
d ) Ta có : \(\widehat{BFD}=90^0=\widehat{BKD}\) vì AB là đường kính của (O)
\(\Rightarrow BKFD\) nội tiếp
\(\Rightarrow\widehat{FDK}=\widehat{KBF}=\widehat{ABC}+\widehat{CBF}=\widehat{MCA}+\widehat{FCD}=\widehat{DCE}\)
\(+\widehat{FCD}=\widehat{FCE}\)
Vì MC là tiếp tuyến của (O)
\(\Rightarrow CEDF\) nội tiếp
a: Xét tứ giác SAOB có \(\widehat{SAO}+\widehat{SBO}=180^0\)
nên SAOB là tứ giác nội tiếp(1)
Xét tứ giác OISB có \(\widehat{OIS}+\widehat{OBS}=180^0\)
nên OISB là tứ giác nội tiếp(2)
Từ (1) và (2) suy ra S,A,I,O,B cùng thuộc một đường tròn
b: Xét ΔSAM và ΔSNA có
\(\widehat{SAM}=\widehat{SNA}\)
\(\widehat{NSA}\) chung
Do đó: ΔSAM\(\sim\)ΔSNA
SUy ra: SA/SN=SM/SA
hay \(SA^2=SM\cdot SN\)
a: Xét tứ giác SAOB có \(\widehat{SAO}+\widehat{SBO}=180^0\)
nên SAOB là tứ giác nội tiếp
=>S,A,O,B cùng thuộc 1 đường tròn(1)
Xét tứ giác SIOB có \(\widehat{SIO}+\widehat{SBO}=180^0\)
nên SIOB là tứ giác nội tiếp
=>S,I,O,B cùng thuộc 1 đường tròn(2)
Từ (1) và (2) suy ra S,O,A,B,I cùng thuộc một đường tròn
b: Xét ΔSAM và ΔSNA có
\(\widehat{SAM}=\widehat{SNA}\)
\(\widehat{ASM}\) chung
Do đó: ΔSAM\(\sim\)ΔSNA
Suy ra: SA/SN=SM/SA
hay \(SA^2=SN\cdot SM\)