K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

Xin lỗi các bạn. Đề bài đúng phải là so sánh BD với \(\sqrt{\left(d-r\right)\left(d+r\right)}\)

27 tháng 12 2021

Gọi E là trung điểm AB \(\Rightarrow OE\perp AB\)

Do D là trung điểm BC \(\Rightarrow BD=\dfrac{1}{2}BC\) (1)

Do C đối xứng A qua M \(\Rightarrow AM=\dfrac{1}{2}AC\)

Do E là trung điểm AB \(\Rightarrow AE=\dfrac{1}{2}AB\)

\(\Rightarrow AM+AE=\dfrac{1}{2}AC+\dfrac{1}{2}AB\Rightarrow ME=\dfrac{1}{2}BC\) (2)

(1);(2) \(\Rightarrow BD=ME\)

Trong tam giác vuông OAE, do OA là cạnh huyền và OE là cạnh góc vuông \(\Rightarrow OE< OA\Rightarrow OE< r\)

Áp dụng định lý Pitago:

\(ME^2=OM^2-OE^2=d^2-OE^2>d^2-r^2\)

\(\Rightarrow BD^2>d^2-r^2\Rightarrow BD>\sqrt{\left(d-r\right)\left(d+r\right)}\)

NV
27 tháng 12 2021

Gọi E là trung điểm AB \(\Rightarrow OE\perp AB\)

Do D là trung điểm BC \(\Rightarrow BD=\dfrac{1}{2}BC\) (1)

Do C đối xứng A qua M \(\Rightarrow AM=\dfrac{1}{2}AC\)

Do E là trung điểm AB \(\Rightarrow AE=\dfrac{1}{2}AB\)

\(\Rightarrow AM+AE=\dfrac{1}{2}AC+\dfrac{1}{2}AB\Rightarrow ME=\dfrac{1}{2}BC\) (2)

(1);(2) \(\Rightarrow BD=ME\)

Trong tam giác vuông OAE, do OA là cạnh huyền và OE là cạnh góc vuông \(\Rightarrow OE< OA\Rightarrow OE< r\)

Áp dụng định lý Pitago:

\(ME^2=OM^2-OE^2=d^2-OE^2>d^2-r^2\)

\(\Rightarrow BD^2>d^2-r^2\Rightarrow BD>\sqrt{\left(d-r\right)\left(d+r\right)}\)

NV
27 tháng 12 2021

undefined

a: Phải vì góc này tạo bởi tiếp tuyến MA và day cung AB

b: Xét ΔMOA vuông tại A có cosMOA=OA/OM=1/2

=>góc MOA=60 độ

sđ cung AB=2*60=120 độ

c: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

=>MH*MO=MA^2

Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA/MD=MC/MA

=>MA^2=MD*MC=MH*MO

 

12 tháng 3 2023

Giúp mình giải câu e với ạ