Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Có A,B thuộc đường tròn (O;R)
=> OA = OB = R Mà AB = R
=> OA = OB = AB => tam giác AOB đều ( định nghĩa tam giác đều)
=> góc AOB = 60 độ ( tính chất tam giác đều)
Trong đường tròn (O;R) có góc AOB là góc ở tâm chắn cung AB nhỏ
=> số đo cung AB nhỏ = góc AOB = 60 độ (tính chất góc ở tâm )
+) Có B,C thuộc đường tròn (O;R) => OB=OC=R
Có OB^2 + OC^2 = R^2 + R^2= 2*R^2 = BC^2 ( vì BC = R\(\sqrt{2}\) )
=> tam giác BOC vuông ở O ( định lý Py-ta-go đảo )
=> góc BOC = 90 độ
Trong đường tròn (O;R) có góc BOC là góc ở tâm chắn cung BC nhỏ
=> góc BOC = số đo cung BC nhỏ ( tính chất góc ở tâm) => số đo cung BC nhỏ = 90 độ
+) Vì tia BO nằm giữa 2 tia BA và BC nên B nằm giữa A và C
=> số đo cung AB nhỏ + số đo cung BC nhỏ = số đo cung AC nhỏ
=> số đo cung AC nhỏ = 60 độ + 90 độ = 150 độ
k cho mk nha !!!!!!!!!!!
Hình tự vẽ na : )
a, - Từ O kẻ đường thẳng vuông góc với AB tại H .
- Xét tam giác OAB có : OA = OB ( = R )
=> Tam giác OAB cân tại O .
Mà OH là đường cao .
=> OH là đường trung trực .
=> \(\left\{{}\begin{matrix}AH=BH=\frac{1}{2}AB=\frac{1}{2}R\sqrt{3}=\frac{R\sqrt{3}}{2}\\\widehat{AOB}=2\widehat{AOH}=2\widehat{BOH}\end{matrix}\right.\)
- Áp dụng tỉ số lượng giác vào tam giác OAH vuông tại H có :
\(Sin\widehat{AOH}=\frac{AH}{AO}=\frac{\frac{R\sqrt{3}}{2}}{R}=\frac{\sqrt{3}}{2}\)
=> \(\widehat{AOH}=60^o\)
=> \(\widehat{AOB}=2.60=120^o\)
Mà Sđ\(\stackrel\frown{AB}=\widehat{AOB}=120^o\)
b, CMTT sử dụng Cos