Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}AH=\dfrac{AB}{2}=\dfrac{R\sqrt{3}}{2}\\AB\perp OH\end{matrix}\right.\)
\(sin\widehat{AOH}=\dfrac{AH}{OA}=\dfrac{\sqrt{3}}{2}\)
\(\Rightarrow\widehat{AOH}=60^0\Rightarrow\) cung nhỏ AB có số đo \(120^0\) , cung lớn AB có số đo \(240^0\)
- Thấy : \(OA^2+OB^2=R^2+R^2=2R^2\)
Mà \(AB^2=2R^2\)
\(\Rightarrow OA^2+OB^2=AB^2\)
=> Tam giác OAB vuông cân tại O .
\(\Rightarrow\stackrel\frown{AOB}=90^o\)
+) Có A,B thuộc đường tròn (O;R)
=> OA = OB = R Mà AB = R
=> OA = OB = AB => tam giác AOB đều ( định nghĩa tam giác đều)
=> góc AOB = 60 độ ( tính chất tam giác đều)
Trong đường tròn (O;R) có góc AOB là góc ở tâm chắn cung AB nhỏ
=> số đo cung AB nhỏ = góc AOB = 60 độ (tính chất góc ở tâm )
+) Có B,C thuộc đường tròn (O;R) => OB=OC=R
Có OB^2 + OC^2 = R^2 + R^2= 2*R^2 = BC^2 ( vì BC = R\(\sqrt{2}\) )
=> tam giác BOC vuông ở O ( định lý Py-ta-go đảo )
=> góc BOC = 90 độ
Trong đường tròn (O;R) có góc BOC là góc ở tâm chắn cung BC nhỏ
=> góc BOC = số đo cung BC nhỏ ( tính chất góc ở tâm) => số đo cung BC nhỏ = 90 độ
+) Vì tia BO nằm giữa 2 tia BA và BC nên B nằm giữa A và C
=> số đo cung AB nhỏ + số đo cung BC nhỏ = số đo cung AC nhỏ
=> số đo cung AC nhỏ = 60 độ + 90 độ = 150 độ
k cho mk nha !!!!!!!!!!!
Hình bạn tự vẽ nhé:
Ta có : AB=OA=OB=R \(\Rightarrow\Delta OAB\) đều \(\Rightarrow\) góc AOB=60 độ. Mà góc AOB là góc ở tâm chắn cung AB \(\Rightarrow\) số đo cung AB nhỏ =60 độ ⇒ số đo cung AB lớn =360 độ -60 độ =300 độ