Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác MAOB có: \(\widehat{OAM}=90^0\left(0A\perp AM\right);\widehat{OBM}=90^0\left(CB\perp BM\right)\)
=> \(\widehat{OAM}+\widehat{OBM}=180^O\)
=> AOBM nội tiếp (tổng 2 góc đối = 180)
Vì I là tâm=> I là trung điểm OM
b) Tính \(MA^2=3R^2\Rightarrow MC.MD=3R^2\)
c) CM: OM là trung trực AB
=> FA=FB
=> tam giác FAB cân tại F
Gọi H là giao điểm AB và OM
Ta có: OA=OB=AI=R => tam giác OAI đều
=> OAI =60O=> FAB=60o (cùng phụ AFI)
Vậy tam giác AFB đều
d) Kẻ EK vuông góc với FB tại K. Ta có:
\(S_{B\text{EF}}=\frac{1}{2}.FB.EK\)
Mà \(EK\le BE\)( TAM giác BEK vuông tại K)
Lại có: \(BE\le OA\)(LIÊN hệ đường kính và dây cung)
=> \(S_{B\text{EF}}\le\frac{1}{2}.R\sqrt{3}.2R=R^2\sqrt{3}\)
GTLN của \(S_{B\text{EF}}=R^2\sqrt{3}\). kHI ĐÓ BE là đường kính (I)
Kẻ đường kính BG của (I). Vì B và (I) cố định nên BG cố
định . Khi đó vị trí cắt tuyến MCD để \(S_{B\text{EF}}\)đạt GTLN là C là giao điểm của FG với đường tron (O)
a) \(MA=\sqrt{OM^2-OA^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)
b)\(\Delta AMB\) cân tại M có OM là đường phân giác (t\c 2 tt cắt nhau)\(\Rightarrow\widehat{AMO}=\dfrac{\widehat{AMB}}{2}\)
\(\sin AMO=\dfrac{OA}{OM}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AMO}=30^0\)\(\Rightarrow\widehat{AMB}=2\widehat{AMO}=60^0\) \(\Rightarrow\Delta AMB\) đều (đpcm)
c) Ta có: \(AC=NC;ND=BD\) (t\c 2 tt cắt nhau)
\(\dfrac{CV_{MCD}}{CV_{MAB}}=\dfrac{MC+MD+CN+ND}{MC+MD+AC+BD+AB}\\ =\dfrac{MC+MD+AC+BD}{MC+MD+AC+BD+AB}\\ =\dfrac{AM+MB}{AM+MB+AB}=\dfrac{2AB}{3AB}=\dfrac{2}{3}\)
d) Ta có: \(MH.MO=AM^2=3R^2\)
\(MP=OM-OP=2R-R=R\) \(\Rightarrow MQ=3R\)
\(\Rightarrow MP.MQ=R.3R=3R^2\)
\(\Rightarrow MH.MO=MP.MQ=3R^2\left(đpcm\right)\)